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ABSTRACT

Computers fundamentally do not reason like humans do, making it time-consuming and

expensive for programmers to find and fix mistakes in, or maintain, hardware and software.

Given that such maintenance activities can often comprise up to 90% of the total cost as-

sociated with hardware and software, interest in better preparing future programmers for

the computational logic reasoning required for computer science industry and academia has

grown. We argue that understanding how programmers reason about computational logic

can guide tool development and training activities for more efficient logical reasoning. In

this thesis, we use non-intrusive, objective measures to present three research components

investigating cognition for computational logic reasoning tasks, with a focus on digital logic,

mathematical logic, and programming logic. We further illuminate, and advocate the inves-

tigation of, promising cognitive interventions to help programmers reason about computers.

First, we present a first-of-its-kind automated algorithm to repair defects in hardware

designs (i.e., digital logic) and a human study investigating its use as a debugging assistant

for programmers. We also produce a publicly-available benchmark suite of defects for the

evaluation of future automated repair techniques for hardware. We find that our approach,

CirFix, is able to successfully repair 16 out of 32 defects, representing a repair rate similar to

that of established software repair techniques. In our human study involving 41 participants,

we further find a preference among programmers for CirFix as a debugging aid for defects

spanning multiple lines, primarily in classroom contexts. Our study paves the path for

exploration of automated repair of hardware designs to reduce maintenance costs in industry

and help programmers in the classroom.

Second, we present a human study involving 34 participants tasked with finding mistakes

in formal algorithmic proofs (i.e., mathematical logic). We use eye-tracking to investigate

the effects of various problem-solving strategies on formalism comprehension task outcomes.

Analyzing participant responses, we find that incoming preparation and programmer self-

perceptions are not accurate predictors of task outcomes, and that differences in outcomes

can be attributed to inductive and recursive logical reasoning. Analyzing eye-tracking data,

we find that more-prepared programmers employ different visual strategies but achieve sim-

ilar outcomes to those of less-prepared programmers, and that programmers with more

xi



successful outcomes frequently go back and forth between presented material. Our results

advocate for pedagogical interventions in undergraduate computer science theory courses to

better prepare future programmers for formal reasoning in industry and academia.

Third, we present a human study probing causality between spatial reasoning and program

comprehension (i.e., programming logic) using transcranial magnetic stimulation (TMS), a

non-invasive neurostimulation technique. Analyzing responses collected from 16 participants,

we replicate a prior psychology study showing that TMS impacts spatial reasoning. More

importantly, and contrary to previously-established correlations, we find no evidence of a

simple causal relationship between activity in the primary motor cortex or the supplementary

motor area and programming outcomes. Further, we find that TMS can affect response time

for programming tasks. Ours is the first study to use TMS in a computer science context, and

our results advocate for further exploration of the technique to investigate neural activity

for programming.

This thesis shows that it is possible to use objective measures to obtain mathematical

models describing programmer behavior and cognition for computational logic reasoning

tasks, and these models can highlight prospective cognitive interventions for student training.
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CHAPTER 1

Introduction

The global IT industry harbors a market share totaling $5 trillion in 2024, with predicted

annual growth rates of 6–8% [1]. The average user spends a significant portion of the day

using electronic devices that comprise hardware and software components [2, 3, 4]. As such, it

is critical for stakeholder companies to ensure correct functionality of their IT infrastructure.

Indeed, a service downtime of mere minutes can be catastrophic for companies, often resulting

in millions in lost revenue [5] and shrinking of consumer confidence and trust [6].

To ensure that their IT services (including both hardware and software) function as

intended, companies often employ a multitude of engineers and software developers (collec-

tively referred to as programmers in this thesis) who command high wages in the modern

economy [7]. Such professionals end up spending most of their time on maintenance activities

(e.g., applying fixes to hardware or software to rectify incorrect or unexpected behavior).

Reports have suggested that programmers often spend around 60%, and up to 90%, of their

paid hours on such activities [8, 9], making maintenance the most expensive stage of the

hardware and software development process. As an example, a 2020 report estimated the

cost of poor software quality in the US alone to be over $2 trillion [10].

Many discrepancies between expected and actual behavior from hardware and software

stem from an incorrect understanding of user requirements and human errors during the de-

sign process (see Section 2.1 for details on the requirements gathering and design processes).

However, even when efforts are put in place to keep such programmer errors in check, one key

issue makes addressing the discrepancies a challenging and time-consuming task: computers

do not reason like human beings do [11, 12]. While there exist computational technologies

that mimic a human brain for reasoning (e.g., neural networks [13]), fundamentally, comput-

ers operate on bits (i.e., zeros and ones) at incredibly fast speeds — often up to billions of

operations in a given second. By contrast, human brains operate using signals transmitted

through a vast and complex array of neurons. This reasoning divide frequently results in

produced code that appears correct at the surface level, yet fails to produce the expected

behavior, eventually requiring expensive programmer maintenance efforts [14, 15]. More
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formally, such bugs (also referred to as defects) correspond to incorrect code that, during

runtime, produces a computed value different from a theoretically correct value, often as a

result of flawed human reasoning [16]. Finding and fixing bugs requires programmers to rea-

son about the underlying logic (e.g., by tracing through program code, reading and writing

formal proofs of correctness, etc.; see Section 2.1), given an input and expected program

behavior or user requirements.

A common way to help humans understand how computers “think” is through training

and education, and this training predominantly takes place at the undergraduate education

level [17]. As such, reasoning about computational logic not only constitutes a fundamen-

tal pillar of software engineering activities [18, 19, 20], but also forms a core component of

undergraduate computer science curricula [21]. Indeed, most introductory computer science

courses are structured around cultivating critical thinking and problem solving abilities using

logical reasoning [22, 23]. Further, many companies have committed a significant amount of

resources in retraining programmers for efficient computational logic reasoning and program-

ming (e.g., [24]). However, achieving uniformly satisfactory outcomes for computational logic

reasoning training is difficult, given the varying levels of incoming preparation programmers

possess [25, 26].

Given its importance to the field of computer science (both education and industrial

practice), we are interested in investigating how programmers reason about computational

logic. A foundational understanding of the cognition behind logical reasoning can help shed

light on ways to help programmers reason about logic more effectively.1 Note that while

there exist several interpretations of logic (e.g., the study of correct reasoning or deduction

in Philosophy [27]), in this thesis, we consider three facets of logic related to computation:

digital logic [28] (e.g., hardware designs), mathematical logic [29] (e.g., proving properties

about algorithms), and programming logic [30] (e.g., coding, manipulating data structures).

In the realm of psychology and cognitive science, cognition refers to the mental processes

involved in acquiring knowledge [31] and comprises several processes, including attention,

language, learning, memory, perception, and reasoning [32]. Over the years, researchers have

investigated cognitive processes in a variety of contexts, including automobile driving [33],

education [34], language [35], marketing [36], medical decision-making [37], office work [38],

and team-based sports [39], working memory [40], among others. Such studies have furthered

our understanding of how the human brain addresses different tasks, and what factors are

associated with task success.

1We restrict the scope of this dissertation to obtaining a better understanding of the cognition behind
logical reasoning, rather than investigating suggested pedagogical interventions. We advocate for such in-
vestigations as future work.
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Within a computer science context, several studies investigating cognition for program-

ming have helped researchers and educators better understand how we program [41, 42, 43,

44, 45, 46]. Many cognition studies of programmers have also shown the potential to inform

pedagogy and guide tool development and retraining (see Floyd et al. [43, Sec. II-D] for a

summary). This potential has been recently realized by several studies demonstrating that

cognitive interventions (or changes in behavioral activity based on cognitive processes) can

improve programming outcomes in introductory computing [47, 48, 49, 50, 51], encouraging

additional work on understanding the cognitive basis of programming.

Given the potential impact of cognitive interventions on effective and efficient reasoning,

this thesis probes a better understanding of programmer behavior and associated cognitive

processes underlying logical reasoning in computer science (i.e., how programmers understand

computational logic).

1.1 Approach

To obtain a deeper understanding of logical cognition, we desire a solution that satisfies the

follow criteria:

• Non-intrusive Methodology. While medical imaging approaches like Functional

Near-Infrared Spectroscopy (fNIRS) and Functional Magnetic Resonance Imaging

(fMRI) have been successfully used to investigate user cognition in Computer Sci-

ence [41, 42, 43, 44, 45, 46], such approaches often carry ecological validity concerns

(e.g., a programmer inside an fMRI machine or connected to fNIRS equipment is per-

forming computer science tasks in a non-traditional environment, study stimuli may be

limited to a 30 second duration, etc.) [45, Sec. VI]. We propose a solution that allows

for user cognition to be investigated non-intrusively (i.e., in a more natural setting)

with minimal interference to user attention.

• Objective Measures. Research from both psychology and computer science has cast

doubt on the trustworthiness of subjective measures [52, 53] (e.g., self-reporting). As

such, we primarily favor objective measures to understand cognition for computational

logic in a generalizable way.

• Context-specific Models. We desire an understanding of a variety of comprehension

tasks for computational logic. Recent research has shown that user cognition varies for

different computer science activities (e.g., different regions of the brain are correlated

with code comprehension [43, 54] and code writing [46]). Instead of producing one
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overly-generalized model for all logical cognition, we propose to investigate context- or

task-specific models associated with computational logic.

• Incoming Preparation. Software engineers entering a workforce often have different

levels of incoming preparation or expertise [25], and this disparity in preparation is

also reflected in students at the undergraduate level [26]. Since we aim to illuminate

promising pedagogical interventions for follow-on investigation, we desire a solution

that accounts for incoming preparation in the produced mathematical model (i.e.,

applies to students regardless of their levels of incoming preparation).

Previous research investigating user cognition for computer science activities does not

satisfy one or more of the aforementioned desired properties. For instance, several studies

investigating the cognitive processes behind programming have administered study stimuli

inside a narrow and loud fMRI machine or with an array of external fNIRS connections

attached to the participants [41, 42, 43, 44, 45, 46], calling into question the ecological

validity of such experiments. By contrast, we desire an approach that allows the participants

to complete the study tasks in a more traditional environment. Other studies investigating

the psychology of programming (e.g., user behavior while programming [55, 56]) in more

ecologically-valid settings often rely on self-reporting data or subjective measures that may

not be adequately trustworthy [57]. Critically, many studies on user cognition for computer

science tasks also do not elucidate how factors such as incoming preparation or expertise,

among others, affect decision making in such programming tasks [58, 59, 60]. Since we aim to

probe pedagogy based on student cognition, we desire an approach that explicitly accounts

for incoming preparation in our models, and as such, can be applied to a wider variety of

student groups.

We combine several insights to present a systematic study of programmer behavior and

cognition for several tasks involving computational logic. First, we can implement objective,

non-intrusive measures in a computer science context to establish correlations between vari-

ables. In particular, for this thesis, we hypothesize that with the emergence of technologies

like high-precision eye-tracking, coupled with novel state-of-the-art bug-finding algorithms,

it is possible to study user cognition for computation logic in a more ecologically-valid set-

ting. Second, we can use medical devices in a computer science context to investigate

causal relationships. In this thesis, we adapt the scientific approach and methodology be-

hind transcranial magnetic stimulation from psychology and medicinal research, and apply

it in a programming context for the first time to probe neural causality. Finally, we can use

more advanced statistical rigor in computer science to account for student background and

context. For this thesis, we hypothesize that using multi-level regression models can help
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us draw nuanced conclusions, and that accounting for incoming preparation or expertise as

an explicit independent variable in our produced models can allow suggested pedagogical

interventions to be applied to more students with different levels of preparation.

Combining these insights allows us to present the following three research components

investigating cognition for computational logic:

(1) Does pointing programmers to the potential source of defects in a hard-

ware design help their debugging efficacy? In the first research component, we develop

the first automated program repair (APR) algorithm for hardware designs (i.e., digital logic)

and investigate its use as a debugging aid for novice and expert programmers. Our study

participants are shown defective hardware designs with partial and full debugging hints (see

Section 3.3.3), and we compare their debugging efficacy against a baseline of no debugging

information. We demonstrate the utility of the implementation of the algorithm as a de-

bugging assistant using statistical tests on behavioral data collected from our participants.

We hypothesize that our algorithm can be useful in a classroom context to help improve the

debugging efficacy of programmers.

(2) How exactly do programmers locate incorrect parts of an algorithmic

proof? In the second research component, we use eye-tracking to gather insights into

student problem-solving strategies for proof or formalism comprehension tasks (i.e., mathe-

matical logic). We further investigate any differences in strategies (e.g., visual attention on

different parts of the proof) used by students with different incoming preparation for formal

methods. Our participants are shown a series of algorithmic proofs and asked to identify any

mistakes in the proofs. We use statistical tests on the eye-tracking, behavioral, and outcome

data to understand and compare the strategies employed by students with different levels of

incoming preparation. We hypothesize that understanding the strategies used by different

students and their outcome success rates can help elucidate how educators can better prepare

students for formal reasoning about algorithms.

(3) If we temporarily excite or inhibit the brain regions associated with ma-

nipulating 3D objects, does it impact programmers’ ability to reason about

code? In the final research component, we investigate the relationship between spatial

reasoning (i.e., the ability, with well-studied cognitive processes, to mentally visualize and

manipulate 3-dimensional structures) and program comprehension tasks (i.e., programming

logic) using transcranial magnetic stimulation (TMS). Previous studies have found neu-

roscientific correlations between spatial visualization and various program comprehension

tasks [45, 47], but a causal relationship between the two cognitive processes is yet to be

established. We use TMS to stimulate two brain regions associated with spatial reason-

ing tasks and one control region before presenting participants with program comprehension
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tasks. We use statistical tests on the collected behavioral data to determine the presence of a

casual link between brain activity for spatial reasoning and that for program comprehension.

We hypothesize that such a causal link at the neurological level could spur changes in in-

troductory programming education (e.g., including spatial visualization training) to improve

student outcomes.

The overarching thesis statement for this work is:

It is possible to use objective measures to obtain mathematical models describing

programmer behavior and cognition for computational logic reasoning tasks (with

a focus on digital logic, mathematical logic, and programming logic), and these

models can highlight prospective cognitive interventions for student training.

This thesis includes, to the best of our knowledge, the first automated program repair

algorithm aimed at diagnosing and repairing hardware design defects. We also present

the first TMS study of programming, demonstrating the applicability of the technique to

computer science research. To support open and reproducible science, we have made publicly

available the source code and datasets (including our statistical analysis scripts) for results

associated with all three research components.

1.2 Summary and Organization

The main contributions of this thesis include:

• An automated program repair algorithm for hardware designs (i.e., digital logic) and a

mathematical model of the effects of its use as a debugging assistant for programmers;

• A mathematical model of the cognitive processes for formalism comprehension (i.e.,

mathematical logic) tasks using eye-tracking;

• A mathematical model for the neural connection between program comprehension (i.e.,

programming logic) and spatial reasoning using transcranial magnetic stimulation.

The remainder of this thesis is structured as follows. In Chapter 2, we outline key concepts

and techniques used in this thesis for a general computer science audience. In Chapter 3,

we present a study developing an automated program repair algorithm for hardware de-

signs (i.e., digital logic) and a mathematical model of the effects of its use as a debugging

assistant for programmers. In Chapter 4, we present a study developing a mathematical

model of the cognitive processes for formalism comprehension (i.e., mathematical logic) us-

ing eye-tracking. In Chapter 5, we present a study developing a mathematical model for the
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connection between program comprehension (i.e., programming logic) and spatial reasoning

using transcranial magnetic stimulation. In Chapter 6, we summarize the work in this thesis

and discuss future research directions.
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CHAPTER 2

Background

Prior to investigating cognition for computational logic reasoning, we first introduce key

concepts and techniques for a computer science audience. First, we motivate and introduce

the notion of automatically repairing software in Section 2.1. Second, we introduce the

notion of hardware designs and contrast such designs to traditional software programs in

Section 2.2. Next, in Section 2.3, we provide background, methods, and metrics associated

with eye-tracking. Finally, we explain the approach behind transcranial magnetic stimulation

in Section 2.4. More specific related works for each research component in this thesis, along

with discussions on novelty, are included in the associated chapters.

2.1 Automated Program Repair for Software

Software programs are all around us: many everyday hardware devices require a software

counterpart to function. The construction of software can often by modelled as a process

known as the software development life cycle. The traditional software life cycle includes the

following stages [61]:

• Planning. During planning, the software development team analyzes costs, schedules,

and resources while gathering stakeholder (i.e., consumer, user, etc.) requirements to

create a software requirement specification document.

• Designing. During the design phase, programmers analyze requirements, select opti-

mal algorithms and solutions, choose technologies and tools, and plan integration into

the existing IT infrastructure.

• Implementing. During the implementation phase, the development team translates

the requirements into code, breaking each requirement down into smaller coding tasks

that eventually progress towards the final product.
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• Testing and validation. During this phase, the development team uses both auto-

mated and manual checks to ensure software quality and compliance with customer

requirements. The code is often evaluated as it is developed, resulting in an overlap

between the implementing and testing phases. Programmers often develop extensive

test suites (i.e., a series of inputs to the software with known expected outputs to

check functionality) that can be automatically run to test a program. Additionally,

programmers may manually engage in formal or mathematical reasoning to ensure that

the implemented code matches the requirements specification.

• Deploying. The deployment phase involves making the newly-implemented and tested

code available to the customer for use.

• Maintaining. During maintenance, the team handles bug fixes (often via debugging

activities), customer issues, and software changes. This stage also involves monitoring

system performance, security, and user experience for continuous improvement. Bug

fixes primarily refer to changes made to software by the development team to fix

incorrect behavior.

The software industry is a major driving force behind the $5 trillion worldwide IT mar-

ket [1], and software maintenance is the most time-consuming (and hence, costly) stage in

the software life cycle, with around 60% and often up to 90% of the total cost of software

attributed to the maintenance stage [62, 63]. Further, finding and fixing software bugs after

deployment is often estimated to be 100 times more expensive than fixing bugs during the

design and testing phase [64].

To lower the costs associated with software maintenance, significant research effort has

been devoted to repairing bugs (or errors) automatically over the last decade [65, 66, 67].

Automated program repair (APR) usually takes as input source code with a deterministic

bug (i.e., a bug that can be replicated with a given sequence of steps) and a test suite with

at least one failing test that reveals the bug, and aims to automatically generate fixes to the

buggy code. Most APR techniques operate on a tree representation of the source code of a

program known as an abstract syntax tree (AST) [68].

Such test suite based repair, where test cases are used to guide the search for a patch,

can be further divided into generate-and-validate and semantics-driven approaches:

• Generate-and-validate techniques produce candidate patches for the buggy code and

evaluate them against the test suite to check if all tests pass [69, 70, 71, 72]. Figure 2.1

shows an overview of generate-and-validate APR techniques. Within the APR loop

(gray box in Figure 2.1), fault localization is responsible for automatically implicating
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Figure 2.1: Overview of the generate-and-validate APR technique

lines of code likely responsible for the bug, patch corresponds to automatically applying

an edit to the original program to repair the bug, and validation involves re-running

test suites to assess program behavior.

• Semantics-driven approaches first extract constraints on a program based on test suite

execution and then use these constraints to synthesize a patch [73, 74, 75, 76].

In this thesis, we focus on applying generate-and-validate software APR techniques to

hardware designs, targeting the testing and maintenance phases of the design process.

2.2 Hardware Designs

As our reliance on electronic devices for everyday tasks increases, so does the number of

computer chips around us. From microwaves and refrigerators in the kitchen to personal

computing devices in the office to cars on the road, virtually every electronic item we use

contains a tiny wafer of semiconducting material with an embedded electronic circuit [77],

known as a chip. These silicon chips are typically manufactured in highly-controlled fabrica-

tion plants through a precise circuit etching process that transforms digital hardware designs

into manufactured hardware.

In modern engineering, the hardware design process typically includes producing such

digital specifications (often using hardware description languages, or HDLs) for circuits that

enable programmers to simulate and verify functionality of devices before the manufacturing

process [78]. This design process is critical to get right, since errors are very difficult to
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correct once hardware is manufactured and shipped to consumers (e.g., [79, 80]). As such,

there has been a significant amount of interest in ensuring defects in designs are caught and

rectified before the fabrication process (see Section 3.6).

2.2.1 Properties of Hardware Designs

Hardware or HDL designs differ from software programs in two key ways. First, while

software written in conventional languages such as C [81] and Java [82] is generally based

around a serial execution model (where one line of code executes before the next, etc.),

hardware designs are inherently parallel and often include non-sequential statements (e.g.,

since separate portions of hardware can operate simultaneously). Second, while software

programs usually use test suites to evaluate functional correctness (see Section 2.1), where

individual test cases (or units of tests) may pass or fail depending on the quality of the

software, HDL designs use testbenches [78] — which are programs with documented and

repeatable sets of stimuli — to simulate behaviors of a device (or design) under test.

Consider the design for a faulty 4-bit counter with an overflow bit, implemented in Verilog

shown in Figure 2.2. The design can keep track of an integer count using four bits, spanning

a decimal value from 0 through 15. Once the count goes past 15 (4’b1111 in binary), the

counter should overflow and reset to 0 (4’0000 in binary). The main block of the source

code is shown in Figure 2.2a, with the corresponding testbench in Figure 2.2b. The circuit

design uses variables enable and reset — representing wires in the circuit design — to

increment (lines 35–37) and reset (lines 30–33) the counter respectively. Incrementing the

counter when it has a binary value of 4’b1111 results in the overflow bit being set to true

(lines 39–41). This implementation incorrectly manages the overflow bit: the if-statement

at line 30 is missing an assignment that would reset overflow out. Such defects can have

serious consequences — integer overflow errors can be leveraged into significant security

exploits (e.g., [83]).

The main block of the circuit design code shows an always block (line 27, Figure 2.2a)

that executes repeatedly until the simulation stops. The execution of such blocks can only

be triggered by changes to wires in the sensitivity list that follows the always keyword.

Nearly every digital circuit design includes a clock signal (line 50, Figure 2.2b) that oscillates

between a high and a low state (denoted by events posedge and negedge respectively);

circuits rely on clock signals to know when and how to execute their programmed actions. A

clock cycle is the period of time it takes for the clock signal to oscillate from high to low and

back to a high state. For the 4-bit counter in Figure 2.2a, the wire clk (denoting the clock

signal) is the only wire in the always block’s sensitivity list (see line 27), and lines 28–42
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(a) Main block of the 4-bit counter with an overflow error

(b) Main testing logic from the 4-bit counter testbench

Figure 2.2: A 4-bit counter with an overflow error in Verilog
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are executed every time that wire reaches a high state. Note that there also exists a notion

of asynchronous designs where the state of the system can change in response to changing

inputs. However, given the increased complexity associated with asynchronous designs, most

hardware designs tend to be synchronous in nature [84].

A key property of HDL designs not immediately apparent in Figure 2.2a is that parts of

the design code typically execute in parallel. When a design is realized into actual hardware,

individual components run all the time. Indeed, every statement in a Verilog design not

inside an explicit sequential block of code exhibits concurrency. For instance, for the 4-bit

counter in Figure 2.2a, an implementation managing the overflow bit correctly would include

two assignments to counter out and overflow out (on lines 31 and 32 respectively) that

logically happen at the same time when reset is true.

In this thesis, we exploit the traditional hardware design process and bridge the gap

between software and hardware to introduce a new automated repair algorithm that works

with parallel hardware designs. Our approach, outlined in detail in Chapter 3, can help

designers catch and fix expensive mistakes before the design is manufactured into physical

hardware and distributed to consumers.

2.3 Eye-tracking

There exist several ways to understand user cognition for reasoning tasks. One way to ac-

quire such understanding in a controlled human study is to ask participants to self-report

their subjective thoughts and experiences. Such self-reports, however, are often not trust-

worthy [52, 53]. A more trustworthy approach to probing cognition involves observing

user behavior during task completion using objective measures (see Section 1.1). Unfortu-

nately, such observational studies conducted in unconventional environments or via external

equipment (e.g., wires, electrodes) connected to participants often raise ecological validity

threats [85]. By contrast, when users work on given tasks, their eye movements can serve as

an objective and non-interfering proxy for visual attention, and hence, cognition.

Eye-trackers are non-invasive, cost-effective, and easy-to-use devices that reliably mea-

sure visual attention and effort in variety of tasks [86], including human-computer interac-

tions [87], software engineering [88, 89, 90], driving automobiles [91], marketing [92], and

surgery [93].

Modern eye-tracking cameras measure and track a participant’s eyes and use domain-

specific algorithms to report gaze data that is then analyzed with respect to pre-defined areas

of interest (or AOIs, corresponding to boundaries drawn around a visual feature or element

to be investigated) in a stimulus. AOIs are typically manually defined by an experimenter
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Figure 2.3: Tobii Pro™ eye-tracking setup with associated external processing unit

based on the nature of the study [94, 95].

2.3.1 How Eye-tracking Works

To collect gaze data, an eye-tracker uses high-definition cameras and an infrared light source

to measure corneal reflection [96]. The infrared source casts a pattern of invisible infrared

light on the user’s eyes. A significant portion of the emitted light is reflected back, and this

reflection is captured by the high-definition cameras. On the software front, image processing

is applied to the captured camera data to determine the user’s gaze point.

Screen-based eye-trackers are usually mounted at the top or bottom of a monitor, where

they blend in with the monitor frame and do not interfere with the task being performed (see

the bottom bezel of the monitor in Figure 2.3 for an indicative mounting location). Since

most research-grade eye-trackers sample data at a high frequency, researchers may choose to

use external processing units (center left on Figure 2.3) to offload the processing from the

main computer and avoid performance degradation for study tasks (e.g., mouse or keyboard

lag, applications freezing up, etc.).

For work in this thesis, we use the Tobii Pro™ X3-120 with an external processing unit to

collect gaze data at a sample rate of 120Hz, and the Tobii Pro Lab [97] software to analyze
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collected data.

2.3.2 Eye-tracking Metrics and Key Terms

Two aspects of gaze data, based on ocular behavior, can clarify cognitive load (i.e., strain

on working memory while processing information or completing a task) and task difficulty.

A fixation is an eye gaze that lasts for approximately 200–300ms on a specific AOI and

results in the focus of visual attention on the AOI. The majority of information processing

for humans occurs during fixations [98, 96] and a small number of fixations usually suffices

for a human to process a complex visual input [94, 99]. As such, fixation data is widely used

to measure cognitive load for different tasks, with longer fixations and higher numbers of

fixations indicating higher cognitive load [90, 89]. A saccade is a rapid eye gaze movement

(40–50ms) that occurs between fixations on AOIs, and often does not correspond to cognitive

processing [99, 98]. The regression rate is the ratio of backward or regressive saccades (e.g.,

leftward in left-to-right text reading) to the total number of saccades, and higher regression

rates often indicate increased difficulty in performing and completing a task [100]. Finally,

the attention switching metric depends on fixation counts and measures the total number

of switches between AOIs, and can approximate the dynamics of visual attention during a

task [90].

Modern eye-trackers can also report the pupil diameter of users. Pupil diameter has

been used in the context of eye-tracking to approximate the cognitive load for users working

on study tasks [101, 102, 103], with higher pupil diameters under controlled experimental

conditions (e.g., manipulating cognitive load through task difficulty) indicating increased

cognitive load [104].

In this thesis, we advocate for the use of eye-tracking to measure cognition for com-

putational logic reasoning tasks. In particular, in Chapter 4, we investigate cognition for

formalism (or proof) comprehension tasks (i.e., mathematical reasoning about algorithms)

via eye-tracking.

2.4 Transcranial Magnetic Stimulation

In recent years, the software engineering community has increasingly used medical neu-

roimaging (e.g., fMRI, fNIRS) to non-invasively measure brain activity and understand the

cognitive processes behind programming [41, 42, 43, 44, 45, 46]. Such studies have identi-

fied cognitive processes correlated with various programming tasks. For example, many of

the neuroimaging studies in computer science have found connections between programming

15



and reading [43] or spatial visualization [45, 105], two skills with well-understood cognitive

structures. Note, however, that medical imaging studies often only provide confidence in

correlations between variables, not causative links.

Transcranial magnetic stimulation (TMS) is a safe and noninvasive technique that is

well-established for a variety of clinical and scientific use cases [106]. Clinically, TMS is used

as a treatment for major depressive disorder [107], smoking cessation [108], and obsessive-

compulsive disorder [109], among others. TMS is a well-studied research tool: during 2014–

2024, the National Library of Medicine has recorded over 1000 academic papers published

each year which investigate the use of TMS.

Compared to other methods, TMS is a time-efficient way to investigate the causative

link between neural activity and programming ability. Other medical approaches that affect

the brain in specific areas tend to be invasive, often requiring implanted electrodes, drug

treatments, or neurological surgeries. By contrast, non-medical approaches such as transfer

training or pedagogy are typically studied over a longer period of time (cf. [47]). Using TMS

also removes variance and potential confounds which may be present in a study extending

over a long period of time (e.g., changing physical or mental states of participants). By

disrupting brain activity using this neurostimulation technique and then measuring behav-

ioral outcomes (e.g., timing, accuracy, etc.) on programming tasks, we can observe a causal

relationship between spatial reasoning and programming ability, should one exist.

2.4.1 How TMS Works

Administering TMS involves the use of a stimulator (Figure 2.4a) sending periodic phases

(or pulses) of electric current through a coil (Figure 2.4b). This current induces highly

concentrated magnetic fields around the coil. When the TMS coil is placed on a human

subject’s head (see Figure 5.3 for an indicative example), the TMS pulses produce small

electric currents in the brain, temporarily altering neural activity in the targeted brain

region [110, 106]. Two trackers — one mounted below the coil and another mounted on the

participant via a headband — are tracked by the corresponding infrared camera (Figure 2.4c).

The software for TMS equipment allows a researcher to define targets (i.e., brain regions) for

stimulation and provides real-time feedback on the placement and orientation of the coil for

accurate administration of TMS. In a research context, after stimulation (lasting 40 seconds

for our study; see Section 5.2.3), any equipment attached to the participant is removed and

the participant is asked to complete study tasks on a regular computer. Behavioral data

collected from the participant is later analyzed to infer causal relationships.

For work in this thesis, we use the MagVenture MagPro™ X100 stimulator with an MCF-
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(a) TMS stimulator

(b) TMS coil (c) TMS tracking camera

Figure 2.4: MagVenture MagPro™ TMS stimulator and coil with NDI Polaris Vicra™ tracking
cameras
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B70 butterfly coil and an NDI Polaris Vicra™ tracker. On the software front, we use the

Brainsight® TMS neuronavigation developed by Rogue Research (Montréal, Canada).

2.4.2 TMS Metrics and Key Terms

A variety of pulse patterns and durations (or protocols) have been explored in the context of

TMS [111]. For instance, single-pulse TMS can be used to explore brain functionality with-

out lasting effects (e.g., stimulating a visual brain region to produce momentary sensations

of light flashes), while repetitive TMS (rTMS) can be used to induce changes in brain activ-

ity outlasting the stimulation period (e.g., as a treatment for a neurological or psychiatric

disorder, or as a research tool) [112]. Theta burst stimulation (TBS) is a type of rTMS that

promises effects lasting up to 60 minutes and has been widely studied in the context of the

human motor cortex (e.g., [113]).

To comply with established safety standards, prior to rTMS treatment, researchers often

perform a thresholding step using single-pulse TMS to determine the appropriate stimu-

lation intensity, or the active motor threshold (AMT), for each participant [114, 115] (see

Section 5.2.3.2 for details on an established thresholding process).

In this thesis, we explore the first use of TMS in a programming context to investi-

gate causal relationships at the neural level, demonstrating the applicability of the more

ecologically-valid medical technique to computer science research. For our TMS application,

we use well-studied protocols for participant thresholding (single-pulse TMS) and neurostim-

ulation treatment (TBS).

Having introduced key concepts and techniques used in this thesis, in the next chapter,

we present our first research component. In particular, we explore developing an APR

algorithm for hardware designs (i.e., digital logic), and investigate its use as a debugging aid

for programmers.
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CHAPTER 3

Automated Program Repair for Hardware

Designs

Increases in the complexity of hardware designs (i.e., digital logic) over the past few decades

have challenged the ability of programmers to find and repair defects in circuit descrip-

tions [116]. While significant effort has been devoted to efficiently verifying functional cor-

rectness in hardware design descriptions, relatively little work has been done in patching

defects in such descriptions automatically. By and large, debugging and repairing hardware

designs remains a very expensive and time-consuming task [8]. Indeed, recent functional

and security vulnerabilities due to defects at the hardware design level have led to expen-

sive consequences [80, 79]. To reduce the cost and improve the maintenance of hardware

designs, a solution needs to not only precisely identify sources of defects in real-world hard-

ware descriptions, but also automatically produce repairs implementing correct functionality

of the circuit designs. These repairs can then be shown to programmers for validation be-

fore moving on to the synthesis phase. Additionally, we desire a solution that makes use of

readily-available resources that are part of hardware design to validate proposed repairs.

Previous work has attempted to address this problem but may not satisfy these charac-

teristics of a desired solution. For instance, some techniques automatically localize defects

in design source code but suffer from high false positive rates [117, 118]. Other approaches

for automatic error diagnosis and correction require formal specifications to conduct design

verification [119], which usually do not scale to large designs. Furthermore, previous work

does not operate on behavioral-level descriptions of hardware circuits (i.e., higher-level design

without specifying internal structure in detail) [120, 121].

On the other hand, in the realm of software, significant research effort focuses on re-

pairing bugs automatically [65, 66, 67]. Automated program repair (APR) algorithms fix

defects in software by producing patches that pass all test cases while retaining required

functionality. Traditional APR for software employs fault localization techniques (see Sec-

tion 2.1) to implicate faulty code, and such techniques are often crucial to the success of

19



program repair. Interest in applying software APR methods to hardware has been seen in

the literature [122, 123, 124, 125], but to limited fruition.

While both software programs and hardware description languages (HDLs) share pro-

gramming concepts like expressions, statements, and control structures, suggesting the pos-

sibility of repurposing software repair techniques to hardware designs, we highlight two key

differences between the two domains: (1) HDL designs are inherently parallel and often

include non-sequential statements, since separate portions of hardware can operate simulta-

neously, and (2) Software programs usually use test cases to evaluate functional correctness,

where individual test cases may pass or fail depending on the quality of the software. HDL

designs, on the other hand, use testbenches, which are programs with documented and re-

peatable sets of stimuli, to simulate behaviors of a device under test. In both academia and

industry, the majority of digital hardware design is done using such HDLs.

In the first research component of this thesis, we aim to close the gap between software

APR and the hardware design process. In particular, we develop an APR algorithm for

hardware designs (i.e., digital logic) and investigate its use as a debugging aid for novice and

expert programmers.

3.1 Overview of Experimental Design, Results, and

Contributions

In this chapter, we present two key insights to bridge the gap between software repair tech-

niques and hardware designs. We first hypothesize that while traditional spectrum-based

fault localization approaches (that assign blame to faulty code based on the lines of code

executed by passing and failing test cases; e.g., [126]) do not apply to hardware designs that

feature a more parallel structure [127], certain dataflow-based fault localization approaches

(that use information about the possible values and relationships of data in a program during

execution; e.g., [128]) work well in this domain. Second, we hypothesize that a traditional

hardware testbench can be instrumented to admit observations for candidate patches that

guide the search for APR.

Leveraging these insights, we present CirFix, a framework for automatically repairing

defects in hardware designs implemented in languages like Verilog, one of the most popular

HDLs [129]. CirFix uses genetic programming (GP), an iterative stochastic search tech-

nique, to find candidate repairs for defects in hardware designs. CirFix also makes use of

readily-available artifacts in the hardware design process (e.g., testbenches, simulation envi-

ronments) to diagnose and repair defects in a circuit description. We propose an approach to
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guide the search for a repair by instrumenting hardware testbenches to record the values of

output wires at specified time intervals during a simulation of the circuit design. Our novel

fault localization utilizes the simulations to assign blame — or suspiciousness values — to

incorrect wires and registers (analogous to program variables for software). CirFix then

performs a bit-level comparison of output wires against information for expected behavior to

assess functional correctness of candidate repairs. CirFix employs a fixed point analysis of

assignments made to internal registers and output wires to implicate statements and reduce

the search space, enabling our approach to scale to large circuit designs in industry.

We present a benchmark suite of 32 defect scenarios [69] based on three hardware experts

— two from industry and one from academia — asked to transplant bugs they observed in

real life into 11 different Verilog projects. CirFix can produce testbench-adequate repairs for

21 out of the 32 Verilog defect scenarios within reasonable resource bounds, of which 16 are

deemed correct upon manual inspection.

Furthermore, we evaluate the usability of our novel fault localization algorithm indepen-

dent of the automated repair context through a human study in which 41 programmers

assess its quality and usefulness. We find a statistically-significant preference (p ≤ 0.003) for

CirFix fault localization as a debugging aid in fixing multi-line hardware defects, primarily

in student applications (p ≤ 0.02).

The main contributions of this chapter — separately published in the 27th ACM Inter-

national Conference on Architectural Support for Programming Languages and Operating

Systems [130] and IEEE Transactions on Software Engineering [131] — are:

• CirFix, a repair algorithm for hardware designs.

• A novel dataflow-based fault localization approach for HDL descriptions to implicate

faulty design code.

• A novel approach to guide the search for a hardware design repair that is compatible

with the testbench-based hardware testing process.

• A new publicly available benchmark suite of 32 scenarios, based on proprietary bugs

but available in 11 open projects.

• A systematic evaluation of CirFix on our benchmark suite. CirFix was able to correctly

repair 16 out of the 32 Verilog defects under consideration.

• A human study (n = 41) using CirFix’s fault localization algorithm as a debugging aid

on real-world and student applications. We observe statistically significant preference

using the support for multi-line defects (p ≤ 0.003) in student applications (p ≤ 0.02).
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Algorithm 1 The high-level CirFix pseudocode.

Input: Circuit design to be repaired, C.
Input: Instrumented testbench for circuit, TB .
Input: Expected output for circuit behavior, O.
Input: Fitness function, f .
Input: Parameters, popSize,maxGens , rtThreshold , mutThreshold , eliteThreshold .
Output: Repaired circuit description.

1: pop ← seed pop(C, popSize)
2: repeat
3: childPop ← elitism(pop, eliteThreshold)
4: while |childPop| ≤ popSize and ∀ candidate ∈ childPop. f(candidate,TB , O) < 1.0

do
5: parent ← tournament selection(pop, f)
6: fl set ← fault loc(parent)
7: if probability() ≤ rtThreshold then
8: child ← apply fix pattern(parent ,fl set)
9: childPop ← childPop ∪ {child}
10: else ▷ Repair operators
11: if probability() ≤ mutThreshold then
12: child ← mutate(parent ,fl set)
13: childPop ← childPop ∪ {child}
14: else
15: parent2 ← tournament selection(pop, f)
16: {c1 , c2} ← crossover(parent , parent2 )
17: childPop ← childPop ∪ {c1 , c2}
18: pop ← childPop
19: until resources exhausted or ∃ candidate ∈ childPop. f(candidate,TB , O) = 1.0
20: if resources exhausted then return

candidate ∈ childPop. ∃ other ∈ childPop ⇒ f(candidate,TB , O) ≥ f(other ,TB , O)

21: return minimize(candidate,TB , O)

3.2 Technical Approach

In this section, we present CirFix, an automated repair algorithm for defects in hardware

design code. Our prototype implementation of CirFix operates on hardware descriptions

written in Verilog, and thus supports HDL programming constructs such as sequential and

parallel code, variable reassignment, and synchronized code blocks. Our prototype would

require modifications to generalize to other hardware description languages (e.g., adding

support for AST parsing or different simulation environments). The pseudocode is shown in

Algorithm 1.

CirFix applies our two-pronged HDL-specific approach to implicate faulty design code and
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assess the correctness of circuit descriptions to produce repairs that can then be shown to

programmers for review. Our fault localization approach simulates a faulty circuit and assigns

blame to incorrect wire and register outputs (line 6 in Algorithm 1; see Section 3.2.1). Note

that while traditional software-based APR techniques typically compute fault localization

once at the start of the search for repairs, we choose to repeatedly re-localize to support

multiple dependent edits made to the source code. Our fitness function, tailored to the

hardware domain, scores each candidate patch to guide the search for repairs (lines 4 and

18 in Algorithm 1; see Section 3.2.2).

At a high level, CirFix uses genetic programming (GP) [132], an iterative stochastic search

technique, to synthesize candidate repairs to buggy HDL programs. The framework takes as

input the source code implementing a faulty circuit design, an instrumented testbench used

to simulate the circuit for testing and verification purposes, the expected circuit behavior,1

and the input parameters. The algorithm starts with the original source code and maintains

a population of program variants, each stored as a repair patch [71] describing a sequence of

abstract syntax tree edits parameterized by unique node numbers. Each program variant is

obtained by applying a repair operator (lines 12 and 16 in Algorithm 1; see Section 3.2.3)

or a repair template (line 8 in Algorithm 1; see Section 3.2.3) to a parent selected for re-

production. Candidate variants are selected for reproduction based on their fitness scores

assigned by the CirFix fitness function (line 5 in Algorithm 1; see Section 3.2.4). Our fix

localization identifies code to be inserted or replaced as part of mutation operations (see

Section 3.2.5). The algorithm loops for several generations, each maintaining a population

of program variants, until a plausible repair is found that produces output (as observed by

the instrumented testbench) matching the expected circuit output, or allowed resources are

exhausted (i.e., the algorithm reaches a timeout or a certain number of generations). If

allowed resources are exhausted, the algorithm returns the highest fitness individual in the

terminating generation (line 20 in Algorithm 1). For the final post processing step, CirFix

minimizes [133] a candidate repair to remove extraneous operations not needed to obtain

correct circuit output (line 19 in Algorithm 1; see Section 3.2.6). Candidate repairs are not

deployed directly but are instead shown to programmers for validation before the design is

ultimately synthesized, reducing maintenance costs [134, 135].
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Algorithm 2 High-level algorithm for fault localization for HDL based on a fixed point
analysis of assignments.

Input: Faulty circuit design code AST, ast.
Input: Simulation output, S : Time → Var → {0, 1, x, z}.
Input: Expected output, O : Time → Var → {0, 1, x, z}.
Output: Fault localization set, FL.

1: FL,mismatch ← ∅, ∅
2: mismatch ′ ← get output mismatch(O, S) ▷ Section 3.2.2
3: while mismatch ̸= mismatch ′ do
4: mismatch ← mismatch ∪mismatch ′

5: for node in ast do
6: if implicated(node,mismatch) then
7: FL← FL ∪ {node.id}
8: for each child of node do
9: FL← FL ∪ {child .id}
10: if type(child) = Identifier and child /∈ mismatch then
11: mismatch ′ ← mismatch ′ ∪ {child}
12: return FL

3.2.1 Fault Localization

Fault localization is critical to the success and efficiency of APR [136]. Traditional APR for

software often relies on spectrum-based fault localization [126] to narrow down defects to

certain parts of a faulty program by sampling the program counter. Such fault localization

approaches do not extend naturally to the parallel structure of hardware descriptions [127].

To overcome this challenge, we propose a novel dataflow-based fault localization approach

to implicate faulty code in HDL descriptions. Previous work analyzing defects in large

hardware projects reports that most defects in Verilog descriptions correspond to assignment

statements and if-statements [137]. We present an algorithm that implements an analysis

of assignments made to wires and registers in a circuit’s design code to implicate faulty

statements. Our proposed algorithm transitively captures data and control dependencies in a

context-insensitive fixed point analysis. While traditional spectrum-based fault localization

approaches for software return a ranked list of implicated statements [138, 139, 140], our

approach returns a uniformly-ranked set: due to the parallel structure of HDL designs, a set

of implicated assignments that are equally likely to contribute to the design defect suffices.

Algorithm 2 outlines the high-level pseudocode for our fault localization approach. The

algorithm takes as input the AST of the faulty circuit design, the output from design simu-

1CirFix does not require perfect information for expected behavior for every timestep: the programmer
can choose to only provide information at certain intervals. See prior work RQ4 [130] for an evaluation of
the trade-off between the level of detail of expected output and repair success.
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lation, and the expected circuit behavior (see Section 3.2.2 for the simulated and expected

outputs). It then compares the simulation output against the expected behavior to produce

a set of identifiers (i.e., variable names) for output wires and registers with mismatched val-

ues. Using this mismatch set as a starting point, for every node in the AST, the algorithm

checks if the node is implicated by output mismatch2. Implication for a node in the AST

occurs when

• (Impl-Data): either the node corresponds to an assignment statement and the left

child of the node corresponds to an identifier in the mismatch set (cf. data dependency

analysis),

• (Impl-Ctrl): or the node corresponds to a conditional statement and an identifier in the

conditional statement belongs to the mismatch set (cf. control dependency analysis).

Any implicated node and all of the node’s children are added to the fault localization set.

Additionally, if any child of an implicated node is itself an identifier not part of the mismatch

set, the name of the identifier is added to the mismatch set (Add-Child). For example, for the

4-bit counter introduced in Section 2.2.1, recall that the overflow out wire had incorrect

output from the circuit simulation. This causes the wire to be added to the mismatch

set. The CirFix fault localization implicates the only assignment to overflow out (line 40,

Figure 2.2a) by rule (Impl-Data) in the first iteration of the algorithm. Indeed, the entire

if-statement wrapping this assignment (line 39, Figure 2.2a) becomes implicated by (Impl-

Ctrl), bringing in the new identifier counter out to the mismatch set by (Add-Child). The

process is repeated until no new identifiers are added to the mismatch set.

This novel approach to fault localization for hardware is a good fit for automatically

repairing HDL designs: it returns a precise set of implicated AST nodes in a faulty circuit

design, is context-insensitive and therefore inexpensive to compute, and applies directly to

node types associated with ASTs for languages like Verilog. Note that while we demonstrate

the scalabaility of our approach on a variety of hardware designs of different sizes (see

Table 3.2), our approach may require additional programmer effort to generalize to very

complex designs (e.g., a microprocessor) with millions of wires, gates, and registers.

3.2.2 Fitness Evaluation

The fitness function evaluates the acceptability of a program variant by assigning a value

ranging continuously between 0 and 1 to the variant, with 1 indicating a plausible [72] (i.e.,

2In a focused investigation of our our three largest benchmarks, both control flow complexity and also
the number of wires/registers were found to contribute equally (40–50% each) to the final fault localization
size, and thus the scalability of our algorithm.

25



testbench-adequate) repair ready to be shown to programmers. Fitness provides a termina-

tion criterion for CirFix and guides the search for a repair. As mentioned in Section 2.1,

traditional APR for software uses test-case based evaluation strategies to assess candidate

repairs. Hardware designs, by contrast, use testbenches to verify functional correctness. We

present a novel fitness function tailored to hardware to guide the search for repairs to HDL

designs. Our fitness function uses two key insights: visibility and comparison.

Many traditional hardware testbenches monitor the values of output wires during simu-

lation and assess correctness based on the final output values. For instance, the testbench

for the 4-bit counter introduced earlier (Figure 2.2b) may report that the final value of the

counter is 5 and the overflow bit is 1 when the simulation terminates. Some off-the-shelf

hardware testbenches, especially those for large projects, may not even report the exact in-

correct value, reporting instead merely the presence or absence of an error during simulation.

We want our fitness function to assess a candidate repair based on intermediary as well as

final output values, and assign fitness values to the repair based on its overall closeness to

the correct circuit design [141]. To do so, given a testbench for a faulty HDL description,

we instrument the testbench to record the values of output wires and registers for specified

time intervals. This instrumentation is easily automatable: every hardware testbench must

instantiate a device under test and connect wires to the module being instantiated (cf. unit

tests in software instantiating the object being tested); each module in turn specifies input

and output wires, and a static analysis of the instantiation of the device under test can

provide the information needed to instrument a testbench automatically.

Once the testbench is instrumented, we simulate the circuit design and compare the re-

sults against the expected output (see Section 3.3.1.2 for a discussion on obtaining correct

circuit behavior) to assess functional correctness of the HDL description. We desire a fit-

ness function that assigns high values to candidate repairs that display behavior similar to

expected behavior. To do so, we need to determine the relative contribution of each bit

to the fitness of a proposed repair. Given a set of time steps Time, a set of output wires

and registers V ar, a simulation result S : Time → Var → {0, 1, x, z}, and expected output

O : Time → Var → {0, 1, x, z}, where x or z correspond to unknown logic value and high

impedance respectively, for timestamp ci ∈ Time, we sum over the n = |S(ci)| output bits of

the circuit. We compare the expected value for wire b from clock cycle ci, Oci,b = O(ci(b)),

against the actual value from the simulation result, Sci,b = S(ci(b)). If the bits match, we

add to the fitness sum of the circuit; if the bits differ, we subtract from the fitness. An

additional penalty weight φ is assigned to bits with values of x (uninitialized) or z (high

impedance).

The fitness sum, sum(S,O), and total possible fitness, total(S,O), are defined as follows,
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where represents a bit value of 0 or 1:

sum(S,O) =
k∑

ci=0

n∑
b=0


1 (Oci,b, Sci,b) ∈ {(0, 0), (1, 1)}
φ (Oci,b, Sci,b) ∈ {(x, x), (z, z)}
−1 (Oci,b, Sci,b) ∈ {(1, 0), (0, 1)}
−φ (Oci,b, Sci,b) ∈ {( , x), (x, ), (z, ), ( , z)}

total(S,O) =
k∑

ci=0

n∑
b=0


1 (Oci,b, Sci,b) ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}
φ (Oci,b, Sci,b) ∈ {( , x), (x, ), (x, x),

(z, ), ( , z), (z, z)}

The normalized fitness of the circuit is then defined as:

fitness(S,O) =

{
0 sum(S,O) < 0
sum(S,O)
total(S,O)

sum(S,O) ≥ 0

This novel approach to calculating normalized fitness is effective at capturing whether or

not a candidate design is close to the correct implementation of the circuit, and at guiding

the search for a repair.

3.2.3 Repair Templates & Repair Operators

A repair template for a defect in code is defined as a pre-identified pattern that can be

applied to some aspect of the code to fix the defect. The idea of using templates for APR

is well-studied for software [142, 143, 144]. We apply repair templates to aid CirFix in its

search for repairs. We propose nine repair templates corresponding to four defect categories

for HDL designs. Of the four defect categories we consider, three are suggested in previous

work by Sudakrishnan et al. [137] that analyzes the bug fix history of four hardware projects

written in Verilog and presents several commonly-occurring fixes for HDL descriptions; we

propose the remaining defect category based on our experience with defects in hardware

designs. The repair templates in CirFix are presented in Table 3.1. Incorrect conditionals,

sensitivity lists, and assignments correspond to the three most commonly occurring defects

in the four hardware projects analyzed in previous work [137, Tab. 2]. Note that our repair

templates focus on correct behavior from circuit designs during simulation (cf. rules targeting

synthesizability [145]). For an incorrect conditional for a program branch (e.g., the condition

for a while-loop or an if-statement), our repair templates can negate the conditional.

CirFix uses two standard repair operators from well-known software repair approaches [69,

70, 146], mutation and crossover, to search the nearby space of circuit designs to produce a

repair and to avoid local optima. The input parameter mutThreshold (line 11, Algorithm 1)

27



Table 3.1: Repair templates in CirFix

Defect Category Pattern Description

Conditionals Negate the conditional of a code block (e.g., if-statement, while-
loop)

Sensitivity Lists Trigger an always block on a signal’s falling edge
Trigger an always block on a signal’s rising edge
Trigger an always block on any change to a variable within the
block
Trigger an always block when a signal is level

Assignments Change a blocking assignment to non-blocking
Change a non-blocking assignment to blocking

Numeric Increment the value of an identifier by 1
Decrement the value of an identifier by 1

tunes the relative application of mutation and crossover.

As in common software APR approaches (e.g., [69, Sec. III-F]), the mutation operator

itself can be characterized into three subtypes: replace, insert, and delete. The mutate

function of the CirFix framework generates a random probability value and employs the user-

provided replace, insert, and delete thresholds to choose a mutation sub-type. The replace

operator picks a random node from the fault localization space and replaces the node with

another randomly chosen node from the corresponding fix localization (see Section 3.2.5)

space. The insert operator picks a random node from the fix localization space and inserts it

after another randomly picked node within a code block. The delete operator picks a random

node from the fault localization and replaces it with an empty node — this operation is

equivalent to deleting certain statements from the program variant under consideration.

CirFix uses the standard single-point crossover [147], which picks a crossover point for

each of the two parents. Edit operations to the right of that point are swapped between the

two parents. This results in two children program variants, each carrying some information

from both parents. The crossover operator plays a key role in avoiding local optima when

searching for high-fitness patches.

3.2.4 Selection

Automated program repair techniques based on GP use selection to choose parent variants

from a population based on fitness. Tournament selection [148], a selection approach that
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selects a random pool of t program variants in a population and selects the fittest member

of this pool as the parent, has been used widely for software-based APR [149, 69, 150, 70].

CirFix uses tournament selection to select a parent variant to transfer genetic information to

the next generation as a child variant. The top e% fittest program variants from the previous

generation are automatically included in the next generation (line 3 in Algorithm 1), a process

known as elitism [151, 152].

3.2.5 Fix Localization

Given that fault localization has identified faulty design code to be changed, our fix local-

ization provides some guidelines on how to perform the changes. We use fix localization to

restrict the scope of the insert and replace operators to reduce the number of syntactically-

invalid mutants (cf. [153]).

For the insert operator, we propose to only use statements types (e.g., conditional state-

ments, assignments, etc. — see Annex A.6.4 in the IEEE Standard for Verilog [154] for

the full Backus-Naur form definition of statement types) as the sources for insertion code.

We further allow such statements to be inserted only into initial or always blocks, since

such statements inserted elsewhere violate the syntax of Verilog [154, Annex A.6.2]. For the

replace operator, we design CirFix such that an item in a Verilog module [154, Annex A.1.4]

can be replaced either by another item of the same type, or by an item sharing the same

immediate parent type (as specified in the formal syntax definition of Verilog [154, Annex

A]).

Our fix localization approach reduces the average number of mutants producing compi-

lation errors in our prototype from 35% to 10%. This reduction is comparable to that of fix

localization techniques in software (e.g., [69]).

3.2.6 Repair Minimization

During the search for a repair, CirFix might produce edits to the code that do not contribute

to the repair (e.g., repeated assignment statements within an always block). Such edits do

not increase the fitness of the candidate repair, but they could introduce inefficiencies in the

final circuit design or affect the design’s readability [155].

CirFix removes such extraneous edits in a postprocessing minimization step by finding a

subset of the edits in a repair patch from which no further elements can be dropped without

causing a reduction in the fitness of the patch. As in APR for software (e.g., [69]), we use

the delta debugging algorithm [133] to efficiently (i.e., in polynomial time) compute this

one-minimal subset of the repair patch. The minimized set of repairs is then converted back
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into HDL code implementing the hardware design correctly.

3.3 Experimental Setup

This section describes the experimental setup for our evaluation of CirFix, including the

construction of our new benchmark suite, our choice of experimental parameters, and our

human study on evaluating the usability of CirFix’s novel fault localization.

For our prototype implementation of CirFix, we use the open-source PyVerilog

toolkit [156] (version 1.2.1, modified to support numbering for each node type) to parse

a Verilog description of a circuit and produce an AST representing the circuit design code.

We use Synopsys VCS [157], the primary hardware verification tool used by a majority of the

world’s top-twenty semi-conductor companies [158], to simulate the code using a manually

instrumented testbench to assess functional correctness of the circuit design. Our prototype

for CirFix is implemented using Python 3.6.8 and is made publicly available on GitHub

(https://github.com/hammad-a/verilog repair).

3.3.1 Benchmark Suite for Hardware Defects

For our evaluation of CirFix, we desire a benchmark suite consisting of faulty hardware

designs that are indicative of defects in industry, comprise a wide range in terms of project

size, and correspond to a variety of components found in real-world designs. To the best

of our knowledge, there are no publicly available benchmarks that satisfy our requirements.

Additionally, there is limited open source community support for industrial hardware de-

signs, since such designs are often considered Intellectual Property (IP) of the stakeholder

companies. As such, we propose to adapt the defect-seeding approach common in soft-

ware [73, 159, 160] and present a benchmark suite of defects scenarios [136, 69] — each

consisting of a circuit design, an instrumented testbench for the design, information for cor-

rect circuit behavior, and an expert-transplanted defect from real-life experience — to be

used for the evaluation of automated repair techniques for hardware.

3.3.1.1 Selecting Hardware Projects

Every defect scenario includes a base circuit design and a testbench, as introduced in Fig-

ure 2.2. We required circuit designs with an available testbench and that admit simulation

using the Synopsys VCS tool without any changes to the design code. This is a common

requirement comparable to the benchmarks suites for APR in software [69, Sec. IV-A] [161,

Sec. 3.1]. The hardware projects for our benchmark suite are presented in Table 3.2. For
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Table 3.2: Benchmark hardware projects in our experiments. Project and testbench sizes
are measured by source lines of code as reported by the Unix wc command.

Project Description Project Testbench
LOC LOC

decoder 3 to 8 3-to-8 decoder 25 56
counter 4-bit counter with overflow 56 135
flip flop T-flip flop 16 39
fsm full Finite state machine 115 66
lshift reg 8-bit left shift register 30 44
mux 4 1 4-to-1 multiplexer 19 51
i2c Two-wire, bidirectional serial bus for data

exchange between devices
2018 482

sha3 Cryptographic hash function 499 824
tate pairing Core for the Tate bilinear pairing algo-

rithm for elliptic curves
2206 983

reed solomon
decoder

Core for Reed-Solomon error correction 4366 148

sdram controller Synchronous DRAM memory controller 420 95

Total 9770 2923

each hardware project, we need an instrumented testbench to record output values for our

fitness function. While the instrumentation process is automatable (see Section 3.2.2), we

manually instrument the testbenches for our prototype. Each testbench instrumentation

required under 10 lines of Verilog code, took at most 5 minutes of programmer time, and

did not require any circuit-specific knowledge beyond that available in the testbench (i.e.,

identifier names of output wires and registers, and the clock cycle duration).

We choose six projects from undergraduate VLSI courses to be indicative of repairing

a small component in hardware design. We augment this by choosing the remaining five

projects from OpenCores (a popular website for open-source HDL designs) and GitHub

collectively to be indicative of repairing the entirety of a large circuit design. Unlike some

previous works that only use toy benchmarks for evaluation (e.g., [162, 119]), our benchmarks

include a range of project sizes (in terms of source lines of code), and all projects — including

those from courses taught at the undergraduate level — correspond to components found in

real-world hardware designs. To satisfy our variety requirement, we include a project from

each of the key cores listed on the OpenCores website for certified projects (i.e., arithmetic,

communication, crypto, error correction, and memory).
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3.3.1.2 Obtaining Information for Correct Circuit Behavior

CirFix requires information about expected behavior for a circuit design to assign fitness

values to candidate repairs. In APR for software, guidelines for correct behavior often take

the form of passing and failing test cases [67]. More generally, however, such information

can be induced from a previous version of the design known to be functional [163, 164, 165,

166, 167, 168] or a combination of data mining and static analyses of the design [169, 170,

171, 172], or manually provided by the programmer [173, 174, 175, 176].

This so-called “oracle problem” [177] remains a challenging issue in general for hardware

testing and automated repair: implicit, high-level test oracles (e.g., “the program does not

divide by zero”) used by APR tools for software do not typically carry over to hardware.

Given that circuit designs exhibit parallelism and require synchronization against a clock

signal [178], how a circuit design reaches a certain output is often equally important as the

actual final output produced. As such, any hardware test oracles need detailed information

about the intermediate values from design simulation, and it does not suffice to only use the

output values from the simulation as correctness information for an approach like CirFix.

For our benchmark suite, we follow an established approach in APR for software [179, 65]

and employ a previously-functioning version of the circuit design to record the expected

behavior information for circuits in our benchmark suite. We acknowledge that such a

previously-functioning version might not always be available, or the circuit specification may

have changed. In that case, a programmer can use a partially correct or most up-to-date

version of the circuit as a starting point, and manually annotate the missing or incorrect bits

based on knowledge of the circuit design. This process is analogous to test suite evolution in

software [180]. Ultimately, however, if manual programmer effort and previous designs are

both unavailable, CirFix cannot be applied to repair defects in a circuit.

While we recognize that the process of manually annotating the correctness information

may take longer than manually fixing a single defect, this information is a one-time cost as

long as the high-level circuit specification (i.e., I/O wires and registers, expected behavior)

does not change. Given the number of bugs that may arise during the development and

maintenance of a circuit design, we believe that it would still be more cost effective to invest

programmer effort in the correctness information, which can then be used by CirFix during

inexpensive machine idle time (see discussion in Section 3.4.1).

3.3.1.3 Transplanting Hardware Defects

Since actual industrial defects are not made publicly available, we propose an approach based

on defect transplantation by experts. Previous works have used either randomly-seeded or
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self-seeded defects for evaluation, potentially admitting bias (e.g., [120]). To combat this,

we recruited three hardware experts — two of whom work in industry and one who works

in academia, with 19 years of experience with hardware design collectively — to transplant

(proprietary or non-public) defects from their real-world experience into otherwise-correct

open source implementations of the hardware projects in our benchmark suite. We desire

defects in our benchmark suite corresponding to a variety of complexities, both in terms of

finding and fixing the defect. As such, we define two defect categories for this process:

• Category 1: A Category 1 (i.e., “easy”) defect denotes mistakes pertaining to simpler,

higher-level aspects of circuit design.

• Category 2: A Category 2 (i.e., “hard”) defect denotes more intricate errors that

usually require more effort to diagnose, understand, and/or fix.

To get the benefits of real-world defects in our benchmark suite, we instructed our re-

cruited experts to transplant and categorize real defects they have previously encountered

to the open-source circuits in our benchmark. We also asked our experts for “... variety in

how the defects appear and would be fixed, as long as that variety aligns with how often

[they] observe these bugs or mistakes in real life”. We further required that any transplanted

defects should compile successfully and change the externally-visible behavior of the circuit

with respect to the instrumented testbench, and correspond to approximately the same level

of complexity as that of real-world defects.

Table 3.3 lists the transplanted defects from our experts that met these criteria. In total,

our experimental setup includes 32 different defect scenarios spanning across 11 hardware

projects, with 19 Category 1 (i.e., “easy”) and 13 Category 2 (i.e., “hard”) defects. This

benchmark suite is 1.5–10× as large as benchmark suites used in the hardware diagnosis

literature [120, 117, 118, 162, 119, 137].

3.3.2 Algorithm Parameters

We refer to each execution of CirFix as a trial. Each trial is initialized with a distinct random

seed for reproducibility of our results, and conducted on a quad-core 3.4GHz machine with

hyperthreading and 16GB of memory. We ran 5 independent CirFix trials for each defect

scenario, stopping when an acceptable repair was found. Each individual trial was terminated

after 8 generations of evolution or 12 hours of wall-clock time (whichever came first).

For the GP parameters, we use population size popSize = 5000, repair template threshold

rtThreshold = 0.2, mutThreshold = 0.7. In line with established practices from APR for

software [149, 70, 69], we use deletion, insertion, and replacement thresholds of 0.3, 0.3

33



and 0.4 respectively. For parent selection, we use a tournament size t = 5 to increase the

selection pressure on candidate variants [181]. For elitism, we propagate the top e = 5% of

each generation to the next without any modifications.

For fitness evaluations, we use φ = 2 as additional weight assigned to bits with values

of x or z. This makes incorrect comparisons between ill-defined wires twice as detrimental

to the fitness score of a candidate repair as binary bit mismatches. We found that a weight

φ = 1 did not penalize such incorrect comparisons enough (resulting in longer times to find a

repair), while φ = 3 caused too significant a drop in fitness for candidate variants (negatively

impacting the exploration of the search space for a repair).

We evaluated other values suggested by literature (e.g., smaller population sizes [182,

179]), and found no significant differences in CirFix’s performance.

3.3.3 Human Study Protocol

We aim to investigate our novel fault localization algorithm (see Section 3.2.1) as a debugging

assistant, independent of the automated repair context. We asked programmers, rather than

CirFix, to assess the quality and usefulness of the fault localization algorithm. To investigate

the incremental benefit of our fault localization, we consider three scenarios: the full output

of the algorithm (see Section 3.2.1), only initially implicated statements of the algorithm

(without any transitive information), and no fault localization annotations.

3.3.3.1 Participant Recruitment

Under UM IRB-HUM00199335, we recruited a combination of undergraduate and graduate

computer science students (n = 41). One student reported having less than a month of

experience with HDL designs, ten students reported having 1 to 4 months experience, seven

students reported having 4 months to 1 year of experience, nine reported having 1 to 2 years

of experience, and the remaining six reported having 2 or more years of experience. We drew

students from five undergraduate courses, a graduate course, and a computer engineering

lab mailing list at the University of Michigan. At the beginning of the survey, participants’

background in Verilog was collected (e.g., any courses they have taken). Participant data

was anonymized, but they could optionally request a $25 USD gift card as compensation.

3.3.3.2 Debugging Scenarios

We sampled (uniformly at random) 10 defect scenarios each from student and OpenCores

projects, with roughly equal numbers of Category 1 and 2 defects. To favor readability

and comprehension within a time-constrained human study (e.g., [183, 184]), we filtered out
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Figure 3.1: Example CirFix defect scenario presented to participants

defects that resulted in more than 100 lines of code implicated by fault localization. This

resulted in 12 snippets from the programs in Table 3.2: eight from student projects and

four from OpenCore projects. Each debugging scenario included information on the parent

hardware design and documentation on the desired properties and output.

3.3.3.3 Debugging Task

Each participant was sequentially presented with 6 distinct randomly-chosen debugging sce-

narios. Each scenario was paired with a debugging hint: textual highlighting of implicated

code, as shown in Figure 3.1.

Participants were asked to: (1) identify faulty lines (or bugs) in the snippet, (2) indicate

which lines they would alter to fix the defect, (3) propose how they would alter the lines

to fix the defect if they could patch it. If the snippet version presented to the participant

contained fault localization hints, the participant also rated the usefulness and accuracy of

those hints on a 1–5 scale.

3.4 Results

We analyzed the following research questions:
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RQ 3.1 What fraction of defect scenarios can CirFix repair, and how sensitive is our

fault localization approach?

RQ 3.2 How effective is the CirFix fitness function at guiding the search for a repair to

a circuit description?

RQ 3.3 Does CirFix’s fault localization algorithm improve programmers’ objective per-

formances?

RQ 3.4 In what contexts do programmers find CirFix’s fault localization algorithm help-

ful?

3.4.1 RQ 3.1: Repair Rate, Quality, and Sensitivity for CirFix

Repair Rate. Table 3.3 presents the repair results for each defect scenario. CirFix produced

plausible (i.e., testbench-adequate) repairs for 21 of the 32 (65.6%) defects. Of the 11 defects

that were not repaired, 4 exhausted resource limits while 7 required edits not supported by

CirFix operators and repair templates. While a direct comparison between CirFix and APR

for software is not possible, we observe that the repair rate of CirFix comparable to the

reported repair rates of well-known software repair approaches, e.g., GenProg (52.4%) [69],

Angelix (34.1%) [74], and TBar (53.1%) [143]. When comparing CirFix to a more straight-

forward search algorithm applying edits at uniform to a circuit design, we found that the

brute force algorithm did not scale to the complexity of defects in our benchmark suite and

reported no repairs within the 12 hour resource bounds. Though not part of a comprehensive

scientific evaluation, when tested on simple single-edit defects (not part of our benchmark

suite) in smaller projects from undergraduate courses, the brute-force algorithm still took

hours to find repairs that CirFix found in seconds to minutes, highlighting CirFix’s efficient

pruning of the search space. We leave a full investigation of CirFix against more straight-

forward search as future work. Note that we can not compare CirFix to other baselines for

hardware repair, since at the time of writing, there are no baselines that operate on source

code level Verilog descriptions to automatically repair defects; indeed, that is precisely the

improvement CirFix brings over the state-of-the-art.

The average wall-clock time for a trial to find a repair was 2.03 hours, of which an average

of over 90% was spent on fitness evaluations (i.e., design simulations). Most non-repairs

timed out after 12 hours, though defects for some projects with smaller search spaces hit

the 8 generation maximum first. These results are in line with previously-reported patterns

of behavior for APR for software, supporting our hypothesis that the CirFix algorithm is

capable of performing as well on hardware design defects as established APR approaches do

on software.
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Table 3.3: Repair results for CirFix. “Cat” indicates the category for the defect, “Repair
Time” shows the time for repair (in seconds), and a missing time for repair indicates no
repair was found in 5 independent trials. CirFix produced plausible repairs to 21 of the 32
defect scenarios in our benchmark suite, of which 16 were correct upon manual inspection
(denoted with a ✓) and 14 were deemed correct along a different criteria by an independent
expert team (denoted with a †).

Project Defect Description Cat. Repair
Time (s)

decoder 3 to 8 Two separate numeric errors 1 ✓ 13984.3
Incorrect assignment 2 —

counter Incorrect sensitivity list 1 ✓† 19.8
Incorrect reset 1 ✓† 32239.2
Incorrect increment of counter 1 ✓† 27781.3

flip flop Incorrect conditional 1 ✓† 7.8
Branches of if-statement swapped 1 ✓† 923.5

fsm full Incorrect case statement 1 —
Incorrectly blocking assignments 1 4282.2
Assignment to next state and default in case
statement omitted

2 1536.4

Assignment to next state omitted, incorrect
sensitivity list

2 ✓† 37.0

lshift reg Incorrect blocking assignment 1 ✓† 14.6
Incorrect conditional 1 ✓† 33.74
Incorrect sensitivity list 1 ✓† 7.8

mux 4 1 1 bit instead of 4 bit output 1 —
Hex instead of binary constants 1 10315.4
Three separate numeric errors 2 15387.9

i2c Incorrect sensitivity list 2 ✓† 183
Incorrect address assignment 2 57.9
No command acknowledgement 2 ✓† 1560.5

sha3 Off-by-one error in loop 1 ✓† 50.4
Incorrect bitwise negation 1 —
Incorrect assignment to wires 2 —
Skipped buffer overflow check 2 ✓† 50.0

tate pairing Incorrect logic for bitshifting 1 —
Incorrect operator for bitshifting 1 —
Incorrect instantiation of modules 2 —

reed solomon Insufficient register size for values 1 —
decoder Incorrect sensitivity list for reset 2 ✓ 28547.8

sdram controller Numeric error in definitions 1 —
Incorrect case statement 2 —
Incorrect assignments to registers during
synchronous reset

2 ✓† 16607.6
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We acknowledge that wall-clock runtime for CirFix on a given defect can be longer than

that of an expert human manually fixing the defect. However, CirFix was designed to favor

situations in which programmer time is significantly more expensive than machine time: it

is often more cost-effective to run tools like CirFix using inexpensive machine idle time and

then to employ expensive programmer time to ensure the repairs are correct before being

synthesized [134]. As such, we see CirFix as being cost-effective in terms of reducing the

burden on programmers.

Repair Quality. We follow the approach taken by Long and Rinard [146] for patch

assessment since it follows best practices in the APR literature [185, 72]. We manually

analyze the 21 repairs produced by CirFix. We found 16 of the generated repairs to exhibit

correct behavior, with the final 5 to be correct only with respect to the testbench (i.e.,

overfitting).3 While room for improvement remains, software industrial deployments with

similar rates have proved useful: for example, Bloomberg reported that a 48% correct patch

rate was associated with “very positive” feedback and a general “helpful” opinion [187, p. 5].

We augment this analysis with an independent assessment from Yang et al., an established

expert team in APR [188, 189, 190, 191, 192], who analyzed the semantics of the produced

repairs against the human-written patches and found 14 of the produced repairs to be seman-

tically identical to the human patches (see Table 3.3). While APR expertise is not equivalent

to domain expertise, APR experts tend to be more suited to assessing the patches produced

by these methods due to “creative” (or adversarial or potentially-overfitting) nature of such

patches [54, 193, 194], and evidence suggests that domain-experts may not be a strong gold

standard [195]. We acknowledge that this assessment is not a substitute for a full human

study on patch correctness; however, having two independent teams find converging results

adds confidence that a majority of the plausible repairs do not overfit to the testbench (a

common problem in APR for software [196, 197, 146]), since we inspect intermediate wire

values when assigning fitness scores. We do note that correctness is critical in hardware

designs (e.g., since manufactured chips cannot be easily updated once deployed), and our

use case does not involve deploying patches directly but instead showing plausible patches

to programmers to reduce maintenance costs [134, 135].

We observed that 7 out of the 21 minimized repairs were multi-edit repairs, highlighting

CirFix’s ability to produce repairs to defects that require more than one change to the

circuit design. By comparison, common APR approaches for software usually only produce

single-edit repairs [65], and only recently have there been works investigating multi-edit

3We focus on correctness of a patch against the specification of the circuit (e.g., ensuring the absence of
clock- or reset-domain issues) during our manual inspections. The synthesizability of the design is left to be
evaluated by the programmer during the validation phase of the hardware design process [186].
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Figure 3.2: A representative multi-edit repair by CirFix for a defect in the sdram controller

benchmark. The original defect, with a missing and an incorrect assignment, is shown in
red; the repaired code is shown in green. Edits on lines 8 and 9 correspond to insert and
replace operations respectively.

repairs [74, 198].

For instance, in a faulty version of the sdram controller benchmark, one of our experts

changed assignments to two wires to transplant a Category 2 defect, causing incorrect func-

tionality in the host interface. CirFix assigned this faulty design code a fitness value of 0.818

based on output mismatch. CirFix repaired this defect scenario in 4.6 hours by inserting a

new assignment and modifying an existing assignment. The original defect and the repaired

code are shown in Figure 3.2. This is an indicative instance of CirFix repairing Category 2

(i.e., “hard”) defects with multiple edits to the faulty circuit design. We return to multi-edit

repairs in the human study results (Section 3.4.4).

Fault Localization Sensitivity. To assess repair performance as fault localization

quality decreases, we conducted a targeted experiment reducing the quality of the initial

fault location available to CirFix in a controlled manner. This sort of investigation, in which

the sensitivity of the algorithm with respect to fault localization is assessed, is important in

software APR [199, 200, 201, 202].

When simulation outputs are compared against expected behavior to produce the initial

set of wires and registers with mismatched values (see Section 3.2.1), we also randomly

include some correct wires and registers (with probability 25%, 50%, or 75%) as “noise”.

Because our fault localization is a transitive fixed point calculation, additional initial elements

may result in larger fault localization sets (e.g., informally, the traditional scalability problem

with fault localization is that almost everything may end up implicated).

We focus on defect scenarios CirFix successfully repaired. Table 3.4 presents normalized
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Table 3.4: Repair results for CirFix with added noise to initial mismatch set for our fault
localization algorithm. “Defect Cat.” indicates the category for the defect, “Normalized
Repair Time” shows the normalized time for repair (in seconds) when compared to the
original repair, and a ’—’ indicates no repair was found in 5 independent trials. “Noise”
indicates the percent of disturbance placed on the fault localization. The ordering of the
benchmarks follows Table 3.3.

Project Defect Normalized Repair Time
Cat. 25% Noise 50% Noise 75% Noise

decoder 3 to 8 1 1.11× — —

counter 1 0.49× 0.45× 0.05×
1 0.48× 0.58× 0.86×
1 0.06× 0.98× 0.98×

flip flop 1 0.99× 0.38× 1.86×
1 0.87× 1.18× 0.35×

fsm full 1 0.77× 0.08× 0.58×
2 0.58× 0.57× 0.81×
2 3.21× 3.24× 1.76×

lshift reg 1 1.07× 0.11× 0.11×
1 0.18× 0.49× 0.21×
1 1.01× 0.32× 0.60×

mux 4 1 1 0.27× 0.35× 0.61×
2 1.19× 1.27× 1.24×

i2c 2 0.93× 0.39× 0.34×
2 0.04× 0.13× 0.13×
2 18.57× — 15.88×

sha3 1 1.44× 2.80× 3.60×
2 0.67× 0.33× 0.73×

reed solomon decoder 2 1.39× 0.52× 1.29×

sdram controller 2 0.11× 1.22× 0.55×
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results of five trials at each noise level. Of the 21 defect scenarios CirFix originally plausibly

repaired, CirFix also found plausible repairs for all 21 when subjected to 25% noise, 19 at

50% noise, and 20 at 75% noise. Execution times with lower-quality fault localization are

not statistically different to those found without fault localization noise (p = 0.7, p = 0.6,

p = 0.9, unpaired Student t-test), suggesting that CirFix performs similarly even if the

design or testbench does not admit precise fault localization. Any difference in execution

times can be attributed to the randomness of the search for repairs (a larger fault localization

set may result in new candidate repairs or repairs being considered in a different order).

An investigation of this outcome reveals that many of the same registers and wires were

transitively implicated in both cases (i.e., with and without noise). For example, in the

largest benchmark (reed solomon decoder), there are 10 (out of 11 maximum) elements in

the initial mismatch set and 114 in the final fault localization set. With 75% noise, there are

11 elements in the initial set but 124 in the final fault localization set. This small increase

suggests that many of the potential wires and registers were already transitively implicated

without the added noise. Our targeted experiment furthers confidence that CirFix’s novel

fault localization approach scales to larger designs or those with more complicated or less

precise testbenches that do not admit accurate initial fault localization.

CirFix produced plausible repairs to 21 out of 32 (65.6%) defect scenarios in our benchmark

suite, of which 16 repairs were fully correct and 5 were correct only with respect to the

testbench. The CirFix repair rate is comparable to strong results from APR for software,

suggesting that our approach brings the benefits of APR to hardware designs. Lastly, our

sensitivity investigation gives confidence that CirFix’s fault localization approach scales

to larger designs.

3.4.2 RQ 3.2: Quality of Fitness Function

CirFix’s high repair rate suggests that our fitness function, coupled with our testbench

instrumentation approach, is highly effective at guiding the search for repairs to faulty circuit

designs. We observe that for each change to design code that brings a candidate repair closer

to a correct repair, our fitness function shows a corresponding increase in the candidate

repair’s fitness (i.e., our fitness function has a strong fitness distance correlation, a trait

that makes genetic algorithms thrive [141]). This is best observed in transplanted defects

that require multiple edits to the design code to be corrected. For instance, one of our

experts transplanted a defect in the counter project that required three edits to the design

be repaired. The triple-edit repair produced by CirFix for this defect scenario incrementally

raised the fitness of the best candidate patch first from 0 to 0.58, then to 0.77, and finally
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to 1.0 to produce a correct repair. Similar behavior is seen for every other multi-edit repair

produced by CirFix, indicating that our fitness function is effective at capturing incremental

changes to a circuit design during the search for a repair.

We also observe instances where CirFix produces a repair deemed unfit by our fitness

function and instrumented testbench but considered correct by the original, unannotated

testbench. We examine one such case in detail, related to the out stage module in the error

correction core reed solomon decoder. This module is responsible for generating output

bytes from pipelining input memories. A faulty version of this circuit obtained from one of

our experts removed the reset wire from the sensitivity list of an always block. This caused

incorrect resetting of output wires by the circuit. Our fitness function assigns the incorrect

design code a non-perfect fitness value of 0.999. The original testbench, however, reports no

errors in the incorrect code. The final repair produced by CirFix fixes this defect and passes

all checks by the original testbench and our instrumented testbench. This suggests that our

fitness function and testbench instrumentation can catch errors beyond the capabilities of

the original testbench without adding any additional testing logic.

The CirFix fitness function is highly effective at capturing incremental changes to a cir-

cuit’s design code to guide the search for a repair, and has the potential to increase testing

prowess without any added testing logic to a bench.

3.4.3 RQ 3.3: Fault Localization and Human Performance

We assessed programmer performance by evaluating (1) F-scores (F1) of correctly-identified

faults for each debugging task by each participant and (2) total time taken to complete a

debugging task within no specific time limit (see Section 3.3.3.3). A participant is said to

correctly identify faults for a given defect scenario if they identified program line(s) that

contain a bug or missing line(s). F-scores were evaluated by calculating the harmonic mean

of recall and precision.

To evaluate the statistical significance of participants utilizing the fault localization as

a debugging aid as opposed to none, we used the unpaired Student t-test. We did not

observe a statistically-significant difference in time taken to localize faults with full or no

annotations from our fault localization (p = 0.41). On average, participants spent 299.6

seconds with full annotations as opposed to 239.0 seconds with no annotations. A participant

with an F-score of 1 correctly identified faulty program line(s) or missing line(s) in the defect

scenario, while a F-score of 0 meant no faulty program line(s) or missing line(s) were correctly

identified. We did find that the objective F-score for participants given full localization was

higher (F1 = 0.67) than the objective F-score for participants who had half fault localization
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(F1 = 0.33), which in turn was higher than those without fault localization (F1 = 0.29).

However, while this trend did not fully rise to the level of statistical significance (p = 0.12),

our results indicate CirFix data-flow based notion of fault localization could be a useful tool

for manual debugging, warranting further exploration.

In addition, we found statistically-significant differences in the F-scores between experts

(F1 = 0.37) and novices (F1 = 0.17) when they had CirFix’s fault localization with a

large effect size (p = 0.04, d = 0.54). This statistic did not survive correcting for multiple

comparisons. However, all other significant values reported survive correcting for multiple

comparisons (q = 0.05) to avoid false discovery. We used Cohen’s d due to similarities in

standard deviations in the groups.

We observe a trend suggesting that CirFix fault localization may improve programmers’

objective performances, but this trend does not fully rise to the level of statistical signifi-

cance (p = 0.12).

3.4.4 RQ 3.4: Subjective Judgment of Fault Localization

We assessed participant subjective judgements of CirFix’s fault localization support in vari-

ous contexts, including debugging multi-line defects and different circuit designs (see Section

3.3.1).

For each presented stimulus with a debugging aid, participants were asked to rate, on a

Likert scale, the usefulness and accuracy of the algorithm in helping them localize the circuit

defects as seen on Figure 3.3. Differences in the number of responses per rating arise because

not all participants answered all questions.

Participants rated full fault localization support on student-developed designs to be sig-

nificantly more useful and accurate than full support for open source projects (p = 0.01,

d = 0.7; p = 0.002, d = 1.05, a large effect size). These results suggest our algorithm would

be more beneficial for debugging in pedagogical environments.

Most interestingly, we find that participants rated CirFix’s fault localization support

to be significantly more useful and accurate for debugging multi-line defects than single-line

defects with a large effect size (p = 0.002, d = 1.04; p = 0.003, d = 0.86). Given that support

for multi-line software repairs is limited [203, 204], with most algorithms only supporting

single-line repairs, our results, by contrast, are promising for reducing maintenance costs

associated with more complex defects in the hardware domain.

The statistically significant results on the subjective judgment of CirFix’s fault localiza-

tion may prove to be more beneficial for pedagogy. In our qualitative analysis of optional

questions given to participants at the end of the study, we found that participants, partic-

ularly novices, who self-reported to be less effective at tasks related to debugging hardware
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Figure 3.3: Subjective ratings of CirFix’s fault localization when used as a debugging aid.
Subjects rated the algorithm as a debugging aid based on accuracy and usefulness on a scale
of 1–5, where 1 represents not at all accurate or useful and 5 represents extremely accurate
or useful.

designs, rated the debugging features (e.g., highlighting of implicated statements and nam-

ing of implicated wires or registers) to be significantly useful (p = 0.02, d = 0.97; p = 0.001,

d = 1.35). This suggests that debugging aids with supplemental supportive features, such as

our fault localization algorithm, could help novices navigate these tasks. Despite advances

in hardware development platforms, novices still report intimidation by circuitry [205]. The

self-efficacy of students can be improved by providing them with support they find useful,

such as our fault localization algorithm.

CirFix fault localization may be helpful for multi-line defects (p ≤ 0.003) in classroom

contexts (p ≤ 0.02).

3.5 Threats to Validity

In this section, we summarize threats to validity of our experimental results.

Choice of algorithm parameters. The parameters for the prototype implementation

of CirFix are chosen based on empirical performance and may not be optimal. We do note,

however, that the repair operators, fault and fix localization approaches, and representation

choice for repairs matter more than the actual values of the GP parameters for APR [206].

Benchmark suite construction. Our benchmark defects may not be indicative of

defects in real-world hardware projects, posing a potential threat to external validity. To
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mitigate this threat, we evaluated CirFix on a variety of hardware projects taken from

different sources, and had expert hardware programmers transplant defects from their real-

life experience with HDL designs covering a variety of defect types (see Section 3.3.1.3).

Performance scalability. While our results on the scalability of CirFix’s repairs gives

us confidence that our implementation scales to larger benchmarks than those we tested,

additional programmer effort may be needed to apply CirFix to very large designs, such

as modularizing the design and testbench (cf. functions and unit tests in software). We

leave further optimizations to the CirFix fault localization (e.g., more efficient pruning of

the search space) as future work.

Participant recruitment. Finally, our human study participants are students. While

they may represent new hires joining the workforce, they are not indicative of experienced

hardware programmers.

3.6 Related Work

In this section, we discuss related work on automatic error correction on hardware designs

and automated program repair for software.

3.6.1 Automatic Error Diagnosis and Correction in Hardware De-

signs

While a significant amount of work has been done in automatic error diagnosis of hardware

designs, the correction of such errors automatically has not been well-explored to the best

of our knowledge. Techniques in the works of Jiang et al. [117] and Ran et al. [118] employ

software analysis approaches to identify statements in design code responsible for defects,

but suffer from high false positive rates.

Bloem and Wotawa [119] use formal analysis of circuit descriptions to identify defects, and

Peischl and Wotawa [122] use a model-based diagnosis paradigm that supports source-level

debugging of large VHDL designs at the statement and expression level. This use of formal

methods for error diagnoses is orthogonal to our work, but could be applied to reduce the

search space for approaches like CirFix.

Staber et al. [162] use state-transition analysis to diagnose and correct hardware designs

automatically, but their techniques similarly do not scale to real-world circuits with large

state spaces. Our approach, by contrast, is more scalable to larger, real-world hardware

descriptions. Chang et al. [120] explicitly insert multiplexers to automatically diagnose faults

in hardware designs and suggest repairs; Madre et al. [121] use Boolean equation solving to
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diagnose and rectify gate-level design errors. By contrast, our technique also applies to

behavioral (higher-level) aspects of a circuit design.

3.6.2 Automated Program Repair for Software

In the realm of software, significant research effort has been devoted to repairing bugs au-

tomatically over the last 15 years [65, 66, 67]. Automated program repair usually takes as

input source code with a deterministic bug and a test suite with at least one failing test that

reveals the bug, and aims to automatically generate fixes to the buggy code. Test suite based

repair, where test cases are used to guide the search for a patch, can be further divided into

generate-and-validate and semantics-driven approaches. Generate-and-validate techniques

produce candidate patches for the buggy code and evaluate them against the test suite to

check if all tests pass [69, 70, 71, 72]. Semantics-driven approaches first extract constraints

on a program based on test suite execution and then use these constraints to synthesize a

patch [73, 74, 75, 76]. While software approaches to APR make use of test suites to evaluate

candidate repairs, CirFix uses instrumented hardware testbenches to make visible the inter-

nal and external behavior of a simulated circuit for fitness evaluation. Additionally, APR

for software usually uses spectrum-based fault localization to implicate faulty code, whereas

CirFix uses our novel fault localization approach supporting parallel hardware descriptions.

3.7 Chapter Summary

This chapter presents CirFix, a framework for automatically repairing defects in hardware

designs (i.e., digital logic) implemented in languages like Verilog. CirFix makes use of readily-

available artifacts included in the hardware design process (e.g., testbenches) to diagnose and

repair defects in the circuit description. These repairs can then be shown to programmers for

validation before the synthesis phase, reducing maintenance costs. The testbench-based eval-

uation and the parallel structure of hardware designs pose challenges that render traditional

APR approaches from software inapplicable to the hardware domain.

We present two key insights to bridge this gap. First, we propose a method to instrument

hardware testbenches to make a circuit’s behavior externally available to guide the search

for repairs. We present a novel fitness function that performs a bit-level comparison of the

made-visible output wire values against expected behavior to assess functional correctness

of candidate repairs. Second, we present a novel fault localization approach based on a fixed

point analysis of assignments made to registers and output wires to implicate statements for

defects, since spectrum-based approaches commonly used in APR do not apply to hardware
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designs.

Our systematic evaluation of CirFix presents a new benchmark suite of 32 defect scenarios

transplanted by three hardware experts across 11 different Verilog projects. CirFix produces

testbench-adequate repairs for 21 out of 32 and fully correct repairs for 16 out of 32 of

the Verilog defects within reasonable resource bounds. Lastly, we evaluated the relative

utility of our novel fault localization algorithm independent of our automated repair context

via a human study involving 41 participants. We observed a trend suggesting that CirFix

fault localization may improve programmers’ objective performance, and found a statistically

significant preference (p ≤ 0.003) for CirFix fault localization as a debugging aid in fixing

multi-line defects, primarily in classroom contexts (p ≤ 0.01). While outside the immediate

scope of this thesis, the investigation of a hardware debugging tool in a classroom setting is

merited in light of our results, and we see this investigation as promising future work (see

Section 6.1.1).

In the next chapter, we explore the use of eye-tracking to investigate cognition for com-

puter science formalisms (i.e., mathematical logic).
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CHAPTER 4

Cognition for Formalisms

Formal methods (i.e., mathematical logic) have long been used to provide rigorous guar-

antees for software engineering [207] (e.g., ensuring that executions of a program never

reach an invalid state), and have been incorporated into various core stages of the software

process. Successful applications of formal methods to software include requirements elicita-

tion [208], software specification (e.g., the abstract state machine method [209], design by

contract [210]), software design (e.g., Vienna Development Method [211]), software verifi-

cation [212, 213], testing [214], and maintenance (e.g., legacy code at Microsoft makes use

of assertions [215]). Unfortunately, many formal methods require advanced mathematical

training and theorem proving skills that practitioners typically lack [216].

Given the extensive use of, and increased opportunities for, formal methods in software

engineering [217], educators are placing an increased focus on formalisms (e.g., proofs of

algorithmic properties, runtime complexity analyses, etc.) in undergraduate computer sci-

ence curricula to prepare future programmers for logical algorithmic reasoning [218]. Un-

fortunately, despite the emphasis placed on formalisms in undergraduate computer science

theory courses, students have historically struggled with course outcomes (e.g., in terms of

final grades, mastery and retention of material, etc.). For instance, survey data from a large

public university in the US highlight a trend of dissatisfaction and low outcomes from core

theory courses focusing on formalisms [219, 220]. Given the difficulty associated with having

engineers integrate formal methods into the software process [221], it remains important for

educators to ensure that future practitioners are trained in logical reasoning skills, especially

as they relate to code.

Previous work has used methodologies like eye tracking, occasionally coupled with fMRI

and fNIRS [44, 222], to investigate student cognition for computer science tasks relevant to

software engineering, including reading [183] and writing code [46], manipulating data struc-

tures [45], and reviewing code [54]. Researchers have also examined the cognitive models

associated with higher-level math tasks, including number processing and arithmetic [223].
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However, since formal methods fundamentally differ from other software development pro-

cesses in their focus on mathematical reasoning instead of coding, lessons learned from

cognition for coding tasks may not clarify how students comprehend formalisms, what dis-

tinguishes an expert in formal reasoning from a novice, and how educators can better prepare

students for formal reasoning for computing.

In this chapter, we propose to use eye-tracking to gather insights into the problem-solving

strategies for formalism comprehension (i.e., mathematical logic) tasks employed by students

with different levels of familiarity with, or incoming preparation for, formal methods. We

also investigate reasoning strategies that are correlated with student success, and shed light

on interventions that could help educators better prepare struggling students for the rigorous

logical reasoning required by high-assurance software engineering.

4.1 Overview of Experimental Design, Results, and

Contributions

We argue that understanding how people less familiar with formalisms think about formal

methods and proofs of algorithmic properties could be critical to how educators should teach

formalisms. For instance, since the most vulnerable population groups with non-traditional

backgrounds are also the ones most likely to drop the computer science major [219], educators

need to make sure the needs of such groups are not overlooked. This understanding can also

indirectly impact how high-assurance software engineering firms might train new workers.

We focus on acquiring this understanding through the investigation of the cognition (e.g.,

problem-solving strategies, difficulty completing a task, visual attention, etc.) of computer

science students while performing formalism comprehension tasks (see Section 2.3).

We present a controlled experiment investigating how students read and assess formal

proofs about algorithms for correctness. We recruited 34 participants with varying levels of

preparation for formalisms to perform these comprehension tasks. Participants were shown

pseudocode algorithms from a widely used undergraduate textbook [224], a theorem about

the algorithm with an accompanying formal proof, and a graphical illustration of the algo-

rithm or proof. Participants were asked to evaluate the presented proofs for correctness.

We consider both prior coursework and current performance in our definition of incom-

ing preparation for our participants. We first asked participants to outline the number of

computer science theory courses covering formalisms (e.g., derivations and proofs) they had

either completed with passing grades or were currently taking. We then tested participants

to identify the mistake in a proof taken from an undergraduate textbook. We partitioned our
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sample based on whether a participant had taken more than the median number of courses

in our sample and passed a screening test (see Section 4.4.1 for a more in-depth discussion

on incoming preparation).

Contrary to conventional wisdom suggesting that students with greater incoming prepa-

ration achieve better outcomes for STEM courses [26, 225, 226, 227], we found no evidence

that students with higher incoming preparation perform better at these formalism tasks

(p = 0.96, Cohen’s d = 0.007). We further find no evidence that student experience reports

are accurate predictors of outcomes for formalism comprehension tasks (τ = 0.21, p = 0.15),

or that students are able to correctly identify the parts of a formalism presentation most

pivotal to understanding a proof. Our results also indicate more-prepared students employ

different problem solving strategies, with an increased visual attention on proof prose text

(p = 0.005) and correct (p = 0.03) and distractor (p = 0.038) answer choices, but this

ultimately is not correlated with task outcomes.

We do find, however, that higher-outcome students demonstrate significantly more atten-

tion switching behaviors (i.e., frequently going back and forth between presented materials)

(p = 0.002), and are more likely to perform better at proofs by induction (p = 0.01) and

recursive algorithms (p = 0.006) compared to lower outcome students. Our results argue

for the need for pedagogical intervention in theory courses to ensure student outcomes are

better aligned with the objectives of preparing future software engineers for formal methods.

The main contributions of this chapter — separately published in the 45th ACM/IEEE

International Conference on Software Engineering [228] — are:

• A controlled experimental study (n = 34) investigating student cognition for computer

science formalisms.

• Experimental evidence that suggests incoming preparation does not predict outcomes

for formalism comprehension tasks (p = 0.96), and that students with higher outcomes

employ different problem-solving strategies (p = 0.002) and exhibit better performance

for certain types of proofs and algorithms (p ≤ 0.01).

• Recommendations for educators to further investigate pedagogy for mathematical logic

reasoning, including designing teaching materials to facilitate going back and forth

between the presented content with ease, and emphasizing inductive and recursive

problem-solving.

• A publicly available dataset, along with relevant analysis scripts, for future studies

investigating cognition for computer science formalisms.
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4.1.1 Motivating Example

We desire a deeper understanding of the problem-solving strategies for formalism compre-

hension tasks employed by students with different levels of incoming preparation. Traditional

metrics, such as evaluating student transcripts or self-reports, are not as effective at teasing

apart the problem-solving strategies employed by higher performing students (e.g., [229]).

We hypothesize that eye-tracking can serve as a cost-effective, insightful methodology to in-

vestigate the factors correlated with better outcomes for formalism comprehension tasks. For

instance, struggling students may demonstrate higher regression rate for (i.e., re-read text

and figures more frequently), or increased visual attention to, certain aspects of a formalism

presentation, suggesting greater difficulty completing the task.

As an indicative example, we present a snapshot of the strategies (in terms of visual

attention) employed by two students with different incoming preparation for undergraduate

theory courses (Figure 4.1). Figure 4.1a shows the visual heatmap, constructed from gaze

data collected by an eye-tracker, for a participant with higher incoming preparation for

theory courses. The heatmap indicates a significant proportion of visual attention to the

proof text and answer choices (lower left and right quadrants respectively). By contrast, the

visual heatmap for a participant with lower incoming preparation (Figure 4.1b) suggests a

comparatively increased emphasis on the algorithmic pseudocode and figures (upper left and

right quadrants respectively). While the increased focus by a less-prepared participant on

the algorithm and figures aligns with educator expectations, one would also expect a more-

prepared participant focusing attention on the proof text to achieve better response accuracy.

Quite surprisingly, we find that both participants fail to correctly identify the presence of

mistakes in the proof, and that this trend of no correlation between traditional measures

of incoming preparation and task outcomes extends to the entirety of our participants (see

Section 4.4.1 for a discussion on preparation and outcomes). Note that our use of heatmaps

is intended to present a snapshot of what participants focus on, and is not the sole point

of comparison between participants with different outcomes. Our results in Section 4.4

incorporate various eye-tracking metrics better suited to understanding the complete picture.

Given that neither incoming preparation nor the set strategies employed by more-prepared

students is sufficient at teasing apart factors that result in better outcomes for such formal-

ism comprehension tasks, we turn to eye-tracking to clarify factors correlated with student

success. Our results help us better understand what strategies are correlated with student

success, and in turn, how educators can better prepare future engineers to reason about

formal methods.
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(a) Higher incoming preparation participant heatmap

(b) Lower incoming preparation participant heatmap

Figure 4.1: Visual eye-gaze heatmaps for a stimulus shown to two participants with dif-
ferent incoming preparation. The more-prepared participant (top) focuses visual attention
primarily on the proof and answer choices, while the less-prepared participant focuses on the
algorithm and figure. Both participants choose the wrong answer.

52



4.2 Experimental Setup and Methods

Our experiment centers on a human study in which participants answer questions

about computing formalisms (algorithms, theorems, proofs, and figures) while sub-

jected to eye-tracking. We make the replication materials for our study (including the

pre- and post-questionnaires, stimuli, and de-identified raw data) publicly available at

https://doi.org/10.5281/zenodo.7626901.

4.2.1 Participant Demographics and Recruitment

We recruited 34 undergraduate and graduate computer science students at the University of

Michigan in an IRB-exempt study (HUM00204278).1 Of our 34 participants, 23 identified

as men, while 11 identified as women. Breaking down our participants by class standing,

we recruited 5 first-year students, 10 sophomores, 12 juniors, 6 seniors, and one graduate

student. We required participants be over 18, have completed an undergraduate discrete

mathematics course, and be either enrolled in or have completed an undergraduate data

structures and algorithms course. In addition, to reduce noise in the recorded gaze data, we

encouraged (but did not require) our participants to wear contact lenses in lieu of glasses to

the experiment session where possible. Participants were compensated $25 for an hour of

study time.

4.2.2 Materials and Design

Participants were asked to complete a sequence of formalism comprehension tasks. Each

individual task stimulus consisted of an algorithmic solution to a problem commonly taught

in core computer science undergraduate courses, a theorem for that algorithm, an accompa-

nying proof of that theorem, and a relevant graphical illustration (or figure). Each formalism

comprehension task presented four multiple-choice answers for the presence of mistakes in

the proof, of which only one was correct and three were distractors.

We seeded each proof with mistakes commonly made by undergraduate students in dis-

crete mathematics courses (e.g., incorrect base case for proof by induction, logical contra-

dictions in deductive reasoning, arithmetic errors leading to incorrect conclusions, etc.), and

asked participants to evaluate each proof for correctness. For each algorithm, participants

1A pre-study power analysis, assuming a mean outcome score of 60± 10 for less-prepared participants, a
performance increase of 20% for the more-prepared participants, an enrollment ratio of 1:1 between the two
population groups, and α and power (1− β) values of 0.05 and 0.8, suggests a sample size of 22 participants
(11 in each group). Our estimated scores and performance deltas were based on observed student outcomes
an instructor expectations associated undergraduate CS theory courses at the University of Michigan.
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Figure 4.2: A sample formalism comprehension stimulus for the Towers of Hanoi problem.
The algorithm (upper-left), figure (upper-right), theorem and proof (lower-left) and correct
and distractor answer choices (lower-right) represent the six areas of interest for the stimulus.
The correct answer is (2): the base case should apply when n = 1, and more reasoning is
required to establish the claim for the base case.

were always given the option to indicate that a presented proof contains no mistakes.

For our study, we presented 7 algorithms taken from a commonly-used undergraduate dis-

crete mathematics textbook [224]: binary search, greedy change-making, merge-sort, Towers

of Hanoi, greedy job scheduling, in-order tree walk, and the Halting Problem. Each algo-

rithm was accompanied by a theorem and a proof copied verbatim from the textbook prior to

mistake-seeding. Since the textbook is widely used by educators for introductory computer

science theory courses, we are interested in evaluating the efficacy of the presented material

for student outcomes, and as such, do not alter the proof to make the prose or logic more

or less comprehensible. Since figures are frequently used as an educational instrument (e.g.,

[230]), we included, with each stimulus, a figure related to that formalism comprehension

task taken from the textbook or instructor slides for the theory courses. Figure 4.2 shows a

sample stimulus for the Towers of Hanoi problem.

4.2.3 Experimental Protocol

We recruited participants via in-class invitations and online class discussion forums. Par-

ticipants were asked to read and sign the general consent form prior to their scheduled 60-

minute experimental session. Each session had three components: pre-questionnaire survey,
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eye-tracking session, and post-questionnaire survey and debriefing.

4.2.3.1 Pre-Questionnaire Survey

After participants re-affirmed their consent, we administered a survey to collect basic demo-

graphic data (e.g., gender, native language, class standing, etc.). To measure the incoming

preparation for participants, we collected data on the theory-related courses they had com-

pleted or were enrolled in, and asked participants to complete a screening question from a

widely-used undergraduate discrete mathematics textbook.

4.2.3.2 Eye-Tracking Session

Participants were seated in front of a computer screen with a Tobii Pro X3-120 eye tracker

in a quiet room with controlled ambient light and screen brightness levels. Participants

were encouraged not to look away from the computer screen to help reduce noise in the

gaze data. We first calibrated the eye-tracker for each participant. We then showed the

participants training slides explaining the study design and purpose. Participants were

informed they would be reading several algorithmic proofs from an undergraduate textbook

and determining whether or not each proof is correct. Each participant was presented with

7 stimuli. All stimuli were presented within the interface provided by Tobii Pro Lab [97],

and participants selected their answers via key presses.

4.2.3.3 Post-Questionnaire Survey

After the eye-tracking session, we instructed participants to complete a post-questionnaire

survey and asked them to self-report (on a 1–5 Likert scale) their prior perceived experience

with computer science formalisms, difficulty of tasks they were asked to perform, and helpful-

ness of different aspects of the formalism presentation. Note that while it is common to ask

participants to self-report their experience prior to the start of the experiment, we include

such questions in the post-questionnaire to mitigate potential decrease in performance due

to stereotype threat [231]. This is especially relevant for pedagogy since stereotype threat

is reported to disproportionately affect underrepresented groups and students with non-

traditional backgrounds [232] that may already struggle with outcomes in theory courses. In

addition to the Likert scale data, we also collected qualitative responses from participants

on attributes that make a formalism comprehension task easier to complete.
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4.2.4 Data Collection

We conducted all experiments on a 64-bit Windows 10 machine connected to a 27 inch

monitor with a 1920x1080 resolution. To collect eye gaze data, we used the Tobii Pro X3-

120 with an external processing unit, a non-invasive eye tracker that can detect fixations at

the granularity of a single line of 10pt text. Our eye tracker was set to sample readings at a

frequency of 120Hz (i.e., 120 readings per second). We processed this raw data using Tobii

Pro Lab to generate analyzable gaze data.

4.3 Analysis Approach

In this section, we present the mathematical analyses applied to our eye-tracking and func-

tional data. We applied a false discovery rate (FDR) threshold at q < 0.05 to correct for

multiple comparisons (i.e., to avoid false positives as a result of repeated analyses). All

reported measures of statistical significance in Section 4.4 correspond to p-values corrected

for multiple comparisons.

To preprocess for data quality, we filter outlier data points by removing the responses that

were keyed in too quickly (outside 1.5×SD of the mean response time) and therefore, could

not reasonably correspond to the participants reading a formalism presentation entirely

before selecting an answer. We also filter out data points that correspond to noisy gaze

data [183, Sec. 7.1]. This filtering resulted in 191 out of the original 236 data points being

usable for experimental analyses.

Following the Goldberg and Helfman guidelines [94] for defining AOIs in terms of size

and granularity, we manually divide each presented stimulus into six AOIs: Algorithm, The-

orem, Proof, Figure, Correct Answer, and Distractors. The Algorithm AOI represents the

pseudocode algorithm of interest, including the inputs and outputs of the algorithm and

any explanatory comments. The Theorem and Proof AOIs represent the prose text for the

theorem and the proof respectively. The Figure AOI corresponds to a graphical illustration

of the formalism comprehension task and includes relevant captions and labels. Finally, the

Correct Answer and Distractors AOIs represent the multiple choice responses.

We analyze raw eye-movement data to detect velocity-based fixations (I-VT) [233], a

commonly-used fixation extraction method in the research community [234]. We use the

following standard metrics to analyze and compare the strategies employed by participants

for the formalism comprehension tasks. A strategy models gaze data and visual attention

trends over time for the duration of a task. The fixation time corresponds to the total

duration of all fixations on an AOI, while the fixation count indicates the total number of
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fixations on an AOI. Longer fixation times indicate either higher levels of interest or increased

difficulty, and as such, increased strain on the working memory, in extracting information

from the AOI [90, 235]. The regression rate depends on saccadic eye movements and indicates

the percentage of backward saccades [236], and higher regression rates indicate increased

difficulty in completing a task [96]. The attention switching metric depends on fixation

counts and measures the total number of switches between AOIs, and can approximate the

dynamics of visual attention during a task [90].

Previous work has argued for the use of baseline pupil diameters [102], and we used

the training slides administered after eye-tracking calibration to measure the baseline pupil

diameter (and as such, approximate the difficulty completing a task) for participants prior

to working on the formalism comprehension tasks.

4.4 Results

We consider the following research questions:

RQ 4.1 What is the relationship between incoming preparation and student outcomes

for formalism comprehension tasks?

RQ 4.2 How do student self-reports of formalism comprehension tasks align with empir-

ical results?

RQ 4.3 What factors most distinguish higher-performing individuals from lower-

performing ones?

Table 4.1 outlines the independent and dependent variables for each RQ, including the

metrics used for each variable. Explanations of key terms and eye-tracking metrics in a

software engineering context follow in the relevant RQ subsections.
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Table 4.2: Mean response accuracy, response time, and fixation times on different AOIs
for more-prepared and less-prepared participants. Response and fixation times are given in
seconds, while response accuracy is shown as a percentage. Fixation times are abbreviated
using FT.

Mean (SD)
More-prepared Less-prepared p

Response Time 248.7(±109.6) 240.0(±105.3) 0.93
Response Accuracy 34.8(±17.3) 32.5(±16.1) 0.96

Algorithm FT 19.5(±16.2) 17.1(±17.4) 0.21
Correct Answer FT 1.3(±2.0) 0.8(±1.2) 0.038

Distractor Choices FT 14.6(±12.3) 11.1(±11.5) 0.03
Figure FT 11.0(±45.8) 10.9(±38.6) 0.88
Proof FT 66.8(±12.3) 46.1(±11.5) 0.005

Theorem FT 12.9(±2.0) 11.2(±1.2) 0.12

4.4.1 RQ 4.1: Role of Incoming Preparation

We examine the relationship between incoming preparation of participants and outcomes for

the formalism comprehension tasks. We consider two facets of preparation: coursework count

and performance. First, for coursework count, we enumerate the number of computer science

theory courses covering formalisms (i.e., courses that include proofs and derivations in their

syllabi) that participants had either completed with passing grades or were taking. Second,

for screening proof performance, we asked participants to identify a mistake in a proof distinct

from the stimuli used in the study, and noted whether the participant correctly identified

the mistake. Both facets we consider have been used previously in the context of pedagogy

to approximate incoming preparation [26, 226]. While we note that factoring in grades for

the theory courses would result in a more accurate approximation of incoming preparation,

instructors for upper-level courses typically only require a student to pass the prerequisite

courses, and do not know how well students did in the core courses. As such, we do not

consider grades as a proxy for incoming preparation. We classify a participant who had taken

above the median number of theory courses (i.e., coursework count > 4 for our dataset) and

passed the screening question as more-prepared. Applying our approximations for incoming

preparation resulted in 16 out of 34 participants being classified as more-prepared, with the

remaining 18 deemed less-prepared.

The mean response accuracy (i.e., percentage of correct answers) and response time (i.e,

time taken to choose an answer) for more-prepared and less-prepared participants are shown
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in Table 4.2. Surprisingly, we found no evidence of a statistically-significant difference in

the outcomes between more-prepared and less-prepared students, both in terms of response

accuracy (two-tailed Mann-Whitney U-test with the Benjamini-Hochberg [237] procedure to

correct for false discoveries, p = 0.96) and response time (p = 0.93). Notably, while absence

of evidence is not evidence of absence, the effect sizes for both results were extremely small

(Cohen’s d = 0.007 for response accuracy and d = 0.08 for response time), giving statistical

confidence in the null result (i.e., even if an effect were present, it would be of very low

magnitude and thus unlikely to influence outcomes).

We further found no correlation between the number of theory courses taken and re-

sponse accuracy (Pearson’s r = 0.036, p = 0.84), nor a correlation between participants’

self-perceived experience with formalisms (on a 1–5 Likert scale) and response accuracy

(Kendall’s τ = 0.21, p = 0.18). Our results indicate that, contrary to conventional wis-

dom [26, 225, 226, 227] and instructor expectations, students with greater incoming prepa-

ration perform no better at these formalism tasks, on average, than students with lower

incoming preparation.

These results have potentially major implications, both for pedagogy and the training of

new hires for formal software engineering. On the pedagogy front, our results raise questions

about course design and undergraduate curricula: upper-level undergraduate courses are

often designed with the expectation that students will have completed, and will be familiar

with, material covered in core courses. If students with more exposure to the formal material

do not show evidence of retention over time, educators may need to reconsider upper-level

course design with more of an emphasis on reviewing relevant material covered in lower-level

courses. For high-assurance software engineering, some managers may be tempted to make

hiring and training decisions based on the number of theory courses taken (e.g., from a

transcript or resume). Our results add confidence that regardless of the number of relevant

courses taken, new hires for high-assurance software engineering should be considered for

training to ensure that they are prepared for the challenges of the job, and that managers

should not default to “courses completed” as a proxy of preparation for the job.

Even though participants have similar final outcomes, they employ different strategies.

An analysis of visual behaviors between students with different incoming preparation re-

veals that more-prepared students fixate longer on (i.e., spend more time looking at) AOIs

corresponding to the proof (two-tailed Mann-Whitney U-test with the Benjamini-Hochberg

procedure, p = 0.005, Cohen’s d = 0.49), correct answer (p = 0.038, Cohen’s d = 0.29), and

distractor answer choices (p = 0.03, Cohen’s d = 0.29). The mean fixation times for all six

AOIs for more- and less-prepared participants are included in Table 4.2. Our results suggest

that while more incoming preparation teaches students to read a proof and the associated
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answer choices thoroughly before selecting an answer, this increased attention to the AOIs

is not actually correlated with better student outcomes.

Recall that regression rate is the ratio of backward or regressive saccades to the total

number of saccades. Quite surprisingly, we observed that students with greater incoming

preparation show a higher regression rate (i.e., spend more time re-reading text and figures)

— and as such, increased difficulty [96] — while reading direct proofs (Mann-Whitney U-test,

p = 0.035, Cohen’s d = 0.73). In particular, we observed that more-prepared participants

exhibited a mean regression rate of 0.54 ± 0.09 for direct proofs, while less-prepared par-

ticipants exhibited a mean regression rate of 0.42± 0.09. Given that we found no evidence

of a statistically-significant difference in the performance of students with different incom-

ing preparation for direct proofs, our results suggest that, for our sample, students may be

trained in theory courses to default to induction (see Section 4.4.3) or contradiction as proof

strategies, and may need to put in more mental effort when analyzing a direct proof — a

style that remains highly relevant in formal methods for software engineering (e.g., [215]).

The results from our study suggest that traditional metrics for incoming preparation,

like course counting and pretests, are ineffective predictors of student performance with

formalism comprehension tasks, and that students across the board are not well-trained to

employ different tools for evaluating presented logical deductions for correctness. Indeed,

the two most-prepared participants in our study had the lowest and second-lowest response

accuracies, and the highest-outcome participants were more junior. Our results provide

confidence that students with more exposure to the formal material may not show evidence of

retention over time. As such, it may benefit students if educators focus on upper-level course

design strategies that encourage reviewing relevant material from lower-level undergraduate

courses. The trade-off between using a few lectures to ensure students who took core courses

several semesters ago retain key concepts and exposing students to novel topics is worth

evaluating.

We found no evidence that students with higher incoming preparation, as traditionally

assessed, perform better at formalism comprehension tasks (Mann-Whitney U-test, p =

0.96). This suggests the need for pedagogical intervention in core theory courses to ensure

student outcomes are better aligned with course objectives of having students master and

retain the material and better preparing them for formal methods in software engineering.
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4.4.2 RQ 4.2: Self-Reporting and Formalism Comprehension

Tasks

To collect richer free-response data from our study, we instructed all 34 participants to

provide answers to a post-questionnaire reflecting on their experiences with the study and

outlining what they thought to be the most important parts of a formalism presentation. In

addition to having participants self-report (on a 1–5 Likert scale) the difficulty of tasks they

were asked to perform, the helpfulness different aspects of the formalism presentation, etc.,

we asked three free-response questions:

1. Having completed the study session, would you do anything different the next time

around?

2. What is the most important thing that makes a proof easier to understand?

3. What is the most important thing that makes it easier to spot a mistake in the proof?

To better understand the relationship between participant Likert scale responses and

response accuracy, we use the Kendall’s τ test to conduct a quantitative analysis of the

data. When analyzing participants’ self-reported experience with formalisms, we found no

evidence of a correlation between experience and response accuracy (τ = 0.21, p = 0.18).

We also observed no correlation between self-reported task difficulty and study outcomes

(τ = 0.14, p = 0.35), nor a correlation between the self-reported helpfulness of figures for

formalism comprehension tasks and study outcomes (τ = −0.22, p = 0.13). Our results

do not provide evidence that students are accurate at self-reporting their experience with

formalism comprehension tasks.

To further investigate whether student self-perception is an accurate predictor of factors

associated with high outcomes, we also performed a qualitative analysis on the participants’

self-reported free-response data. 26 out of 34 participants indicated they would employ a

different problem-solving strategy if asked to do the study again. Tied for the most common

change in strategy were paying more attention to the algorithmic pseudocode and reviewing

the materials from core theory courses prior to the study. Our experimental results, on the

other hand, do not indicate a relationship between fixation time on algorithmic pseudocode

(i.e., time spent reading pseudocode) and higher response accuracy (Mann-Whitney U-test,

p = 0.91; see Section 4.4.3). The desire to review materials from core theory courses is

aligned with our experimental results: students with greater incoming preparation do not

perform better, suggesting a lack of retention of course materials over time, and hence,

preparation for high-assurance software.
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When asked to describe the features that make a proof easier to comprehend, about a third

of the participants mentioned concise, easy-to-read English prose in the proof. The second

most popular answer (6/34 participants) corresponded to the use of figures and visuals while

reading the proof. Interestingly, our empirical results do not show evidence of a significant

correlation between self-perceived proof readability and outcomes for formalism comprehen-

sion tasks (Kendall’s τ = −0.14, p = 0.32), or a statistically significant relationship between

increased fixation on (or attention to) figures and response accuracy (p = 0.81).

In response to the traits that make a mistake in a proof easier to spot, the most popu-

lar answer (7/34 participants) focused on step-by-step logical reasoning. The second most

common answer themes (6/34 participants each) were logical inconsistencies in the proof

text and an understanding of the proof strategy. By contrast, only one participant answered

“thinking through a different worked example”, a strategy that is commonly taught in under-

graduate theory courses. Our results suggest that students could benefit from a repertoire of

more effective tools for evaluating logical deductions for correctness. The student-perceived

traits (i.e., breaking down logical reasoning steps and evaluating the reasoning for logical

inconsistencies) remain effective strategies for formalism comprehension tasks. However, the

lower outcomes for these tasks suggests that students are less able to apply those strategies

in a mistake-finding context.

We find no evidence that students experience reports are accurate predictors of outcomes

for comprehending formalisms (τ = 0.21, p = 0.18). We also find no evidence that the

factors identified by students are associated with high outcomes for such tasks.

4.4.3 RQ 4.3: Factors Associated with Higher Outcomes

Given the apparent lack of effect of incoming preparation on the outcomes for our study,

we are interested in investigating the factors that are correlated with better performance

for formalism comprehension tasks. To do so, we perform a sub-population analysis of

students with higher and lower outcomes. We require a participant to have achieved above

the median response accuracy (i.e., ≥ 3/7 answers correct for our dataset) to be classified

as higher performing. Using this metric, we classify 15 out of 34 participants as higher

performing, with the remaining 19 considered lower performing participants. Only 7 out of

the 16 more-prepared participants (Section 4.4.1) were classified as higher performing.

We examined the outcomes for higher and lower performing students for different proof

categories (inductive, contradictory, and direct) and algorithm categories (recursive, itera-

tive, and non-repeating2). We found that, independent of algorithm category, higher per-

forming students are more likely to spot mistakes in proofs by induction than the lower

2The only algorithm in our stimuli that does not involve loops or recursion corresponds to a proof
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performing ones (χ2 test with the Benjamini-Hochberg procedure, p = 0.01). Endres et

al. [238] have investigated student performance for iterative and recursive problem formu-

lations, and observed poorer student performance for recursive algorithms involving non-

branching computation but better student performance for recursive algorithms involving

array manipulation. We find that independent of problem or proof type, higher performing

students are more likely to get proofs for recursive algorithms correct compared to lower

performing students (χ2 test, p = 0.006).

These results have implications for both teaching formalisms for improved outcomes and

preparing students for formal methods in software engineering. Previous work by Polycar-

pou [239] suggests that students who understand recursive or inductive definitions can more

successfully perform proofs by induction, while students who do not are either not able to

perform proofs by induction, or do so mechanically. The fact that students with higher

outcomes in our study are not necessarily those with greater incoming preparation suggests

that undergraduate theory courses taken by our participants may not be putting emphasis on

teaching and making students comfortable with recursive or inductive definitions. In formal

verification for high-assurance software, there has been an increasing interest in automated

theorem proving (e.g., the Z3 theorem prover [240]), an activity that often involves the iden-

tification of an inductive invariant to prove that a certain property holds at all times [241].

Finding an inductive invariant has a direct parallel to correctly identifying an inductive hy-

pothesis for proofs by induction, suggesting that students who are better trained to correctly

establish inductive proofs may be better equipped for automated theorem proving tasks.

Recall that attention switching measures the total number of switches between AOIs, and

can approximate the dynamics of visual attention during a task. We found that higher per-

forming students demonstrate more attention switching behaviors, or frequently go back and

forth between AOIs on the presented materials (two-tailed Mann-Whitney U-test with the

Benjamini-Hochberg procedure, p = 0.002, Cohen’s d = 0.56), with mean attention switches

of 62.5± 33.1 and 45.9± 26.5 for higher and lower performing participants respectively. In

particular, we observed a statistically-significant difference in attention switching for proofs

by contradiction (p = 0.009; 59.8± 32.5 and 38.0± 22.7 mean attention switches for the two

population groups) and iterative algorithms (p = 0.007; 65.7 ± 26.9 and 49.5 ± 28.1 mean

attention switches). We also observed trends for increased attention switching for higher-

performing students for proofs by induction and recursive algorithms, but these trends did

not survive correcting for multiple comparisons. Figure 4.3 shows two illustrative visual

gaze plots for a higher outcome and another lower outcome participant for a stimulus in-

gadget used for the Halting Problem. For completeness, we consider “non-repeating” a separate category of
algorithms.
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(a) Higher-outcome participant gaze plot

(b) Lower-outcome participant gaze plot

Figure 4.3: Visual gaze plots for a stimulus shown to two participants with different out-
comes. The higher-outcome participant (top) displays significantly more attention switching
behaviors, as indicated by the number of lines crossing between different AOI quadrants.
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volving proof by contradiction. The higher-outcome participant displays significantly more

attention switching behavior (as indicated by the increased number of lines between the

AOI quadrants, see Figure 4.3a) compared to the lower-outcome participant (Figure 4.3b).

Notably, we see no evidence of a statistically significant difference in the response times for

the higher performing (with a mean response time of 258.0± 106.6 seconds) and lower per-

forming (with a mean response time of 234.8± 107.4 seconds) participants (Mann-Whitney

U-test, p = 0.17, Cohen’s d = 0.22), adding confidence that the greater attention switching

exhibited by the higher performing participants was not an artifact of more time spent on

the proof comprehension task. In the context of pedagogy, these results argue for exploring

the use of teaching materials (e.g., online tools, lecture slides, and exams) that facilitate

perusal with ease (i.e., without requiring multiple page flips).

To estimate the difficulty associated with completing the formalism comprehension tasks

(e.g., due to the need for remembering the theorem or variable names while evaluating the

proof for correctness), we record the pupil diameters reported by the eye tracker for each

stimulus and obtain the pupil diameter delta against a measured baseline (see Section 4.3).

We found that students with poorer performance also show increased perceived difficulty

going over the figures in general (Mann-Whitney U-test, p = 0.012). In particular, we saw

trends for increased difficulty for lower outcome students looking at figures for inductive

proofs and recursive algorithms, though the latter did not survive correcting for multiple

comparisons (Mann-Whitney U-test, p = 0.032 and p = 0.06 respectively). These results

indicate that students who got inductive proofs incorrect more frequently (in a statistically-

significant manner) also had stress associated with going over figures explaining the algorithm

or proof strategy when compared to their higher-performing peers.

Given that higher-outcome participants exhibited significantly more attention switching,

we consider whether current educational materials admit this sort of problem-solving strat-

egy. For instance, our results argue against exams that require page flips to get relevant

information, since turning or scrolling between pages is not conducive to going back and

forth between presented materials with ease (e.g., [242, Sec. 6.2.1]). In an era of an increas-

ing number of online exams and teaching tools, similar concerns arise: while administering

online lectures, quizzes, and exams, educators could benefit from exploring placing relevant

bits of information in a spatially-proximate manner for a formalism comprehension task, and

contrast the approach against requiring page scrolling or user interface navigation to gather

information before answering a question. Our results suggest that the former may yield more

favorable student outcomes.

Additionally, since we observe differences in performance depending on the type of al-

gorithm or proof, we advocate for increased emphasis on certain types of proofs. Notably,
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our study shows that differences in outcomes can be attributed, in a statistically-significant

manner, to proofs by induction. Previous work has shown that students’ performance with

proofs by induction improves after class instruction, but not to the extent intended during

course design [239], yet strategies involving proofs by induction remain highly relevant in

formal verification of software (e.g., the use of inductive invariants in automated theorem

proving [241]). We encourage educators to emphasize familiarity and comfort with recursive

and inductive definitions and reasoning.

Higher-performing students are more likely to get proofs by induction (χ2 test, p = 0.01)

and recursive algorithms correct (χ2 test, p = 0.006) compared to lower-performing stu-

dents. Higher-outcome students also demonstrate significantly more attention switching

behaviors (Mann-Whitney U test, p = 0.002), suggesting that students who frequently go

back and forth between presented materials are more likely to achieve better results.

4.5 Threats to Validity

In this section, we outline internal and external validity concerns associated with our study.

Generalizability. Our results may not generalize to a wider population. To mitigate this

threat, we recruited participants from a large public university with a wide array of different

backgrounds (including native language, incoming preparation, class standings, etc.). We

also note that the primary goal of our study is to understand how to better teach formalisms

at the undergraduate level (and indirectly, to shed light on hiring considerations for certain

software engineering sectors), and thus, recruiting seasoned industry professionals is less

relevant.

Choice of study tasks. While we select study tasks to have a parallel to activities

involved in high assurance software engineering (e.g., producing machine-checkable proofs

for formal verification), we acknowledge that our choice of assessments and task difficulty

could be producing a floor effect for participant performance, where participant response

accuracy is clustered around lower scores. We encourage researchers to investigate formal-

ism comprehension with different proof comprehension tasks (e.g., completing an existing

correct proof) to verify the effect of incoming preparation and expertise on formal reasoning

outcomes.

Stimuli construction. Our stimuli construction may introduce researcher bias. To

mitigate this threat, we select our stimuli from an undergraduate textbook widely used

by educators, and supplement any figures from undergraduate course lecture slides serving

thousands of students each year.
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Eye-tracking data noise. We use state-of-the-art software to calibrate the eye-

tracker [97] and widely-used eye-tracking metrics and analyses [90] to minimize noise in

collected data.

Pedagogical suggestions. Our suggestions for pedagogy are not based on controlled

human studies investigating the impact of the interventions. Instead, in this thesis, we

illuminate promising interventions and advocate for their evaluation in controlled contexts

before implementation in a classroom setting.

4.6 Related Work

Previous eye-tracking work investigating problem-solving strategies employed by students

has shown that differences in search strategies can lead to significant differences in task

outcomes [243, 244, 245].

For instance, Netzel et al. found that high-accuracy students were better able to use

information in science-related diagrams [243]. We similarly observed that high-performing

participants display reduced cognitive load when going over figures related to formalism

comprehension tasks. Hegarty et al. [244] investigated arithmetic problem solving involving

relational terms inconsistent with the required arithmetic operator (e.g., the use of less than

for tasks involving addition), and found that low-accuracy students made more reversal errors

for inconsistent problems, and that high-accuracy ones required more re-readings for previous

text fixations. Our study does not reveal a difference in response accuracy between high-

and low-outcome students for proofs by contradiction (that involve logical inconsistencies in

proof text). We do find, however, that higher-outcome students display significantly more

attention switching as they assimilate presented information, a strategy that is analogous to

re-reading text.

Figures are frequently used as educational instruments [230, 246, 247], yet their impor-

tance as a medium of instruction for a particular field is not always well-understood. For

instance, Susac et al. [245] found that diagrams were rarely helpful for physics. By contrast,

Yoon et al. [248] studied the importance of figures for causal reasoning problems, and found

that even for questions missing a figure, 48% of the students still frequently fixate on the

area where the figure would have been, indicating a relative higher importance for figures.

For both studies, however, the inclusion of diagrams did not affect the participants’ time

taken to respond or response accuracy. In a mistake-finding context for formalism compre-

hension, we similarly do not find a relationship between fixation on, or perceived importance

of, figures on task outcomes.
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4.7 Chapter Summary

Formal methods (i.e., mathematical logic) have been increasingly applied to software en-

gineering, but often require mathematical training and advanced logical reasoning abilities

that software practitioners often do not possess. Given the challenges associated with inte-

grating formal methods into software, educators are increasingly focusing on formalisms in

undergraduate theory courses that already suffer from unsatisfactory student outcomes.

In this chapter, we use eye-tracking to better understand the problem solving strategies for

formalism comprehension employed by students with different levels of incoming preparation,

and more indirectly, gather insights into how educators can prepare future software engineers

for the rigorous logical reasoning that is a core part of high-assurance software engineering.

In a controlled human study involving 34 participants, we find that incoming preparation

is not an accurate predictor of task outcomes (p = 0.96), that student experience reports

and self-perceptions are not effective at predicting task outcomes (p = 0.18), and that the

increased attention to proof text by more-prepared students is not correlated with higher

task outcomes (p ≤ 0.04). We instead find that students who exhibit more attention switch-

ing behaviors are more likely to succeed (p = 0.002), and that differences in formalism

comprehension outcomes can be attributed to performance for proofs by induction and re-

cursive algorithms (p ≤ 0.01). Our results advocate for pedagogical interventions in theory

courses to better prepare future programmers for formal reasoning for software. We make

our datasets publicly available for researchers to replicate or build on our study.

In the next chapter, we explore the use of transcranial magnetic stimulation (TMS) to

codify the relationship between spatial reasoning and program comprehension (i.e., program-

ming logic).
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CHAPTER 5

Programming and Spatial Reasoning

In recent years, neuroimaging studies — studies that non-invasively measure brain activity

— have been used by researchers to pinpoint the brain regions most correlated with common

programming activities (i.e., programming logic). Such activities include code comprehen-

sion [41, 42, 44, 249], code reading and writing [43], debugging [250, 251], and data structure

manipulation [45, 46]. These studies, and subsequent work, identified key cognitive processes

correlated with programming tasks.

For example, data structures are often described spatially (e.g., “balanced”, “length”,

“height”, etc.), suggesting a potential relationship between how humans reason spatially

and how they reason about data structures. Spatial reasoning (or spatial visualization)

refers to the ability to mentally manipulate three dimensional objects. On this front, Huang

et al. confirmed a correlative relationship between spatial visualization and data structure

manipulation [45]. Such studies have shown the potential to improve our understanding of

expertise, to inform pedagogy, and to guide tool development and retraining (see Floyd et

al. [43, Sec. II-D] for a summary).

Despite these potential benefits and despite researcher interest, to the best of our knowl-

edge, no prior neuroimaging study in computer science has confirmed a causal relationship

between patterns of neural activation and programming activities. Specific causal relation-

ships from one variable to another cannot usually be assessed from an observed association

between them [252, 253] (cf. “correlation is not causation”, confounds, etc.).

In this chapter, we propose to probe causality at the neural level for spatial reasoning

and program comprehension tasks (i.e., programming logic) using transcranial magnetic

stimulation.
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Figure 5.1: High-level TMS experimental architecture: “Does impairing brain regions asso-
ciated with spatial reasoning influence programming outcomes?”

5.1 Overview of Experimental Design, Results, and

Contributions

To scientifically investigate the plausible existence of a causal connection between spatial

visualization and programming tasks, we require an approach that limits the effects of any

confounding variables: manipulating and influencing brain regions directly. The desired

approach should: (1) admit high-confidence causal inference, (2) comprise a non-invasive

process, and (3) apply to indicative programming tasks.

We propose the first investigation of a causal relationship between spatial reasoning and

programming tasks. We use transcranial magnetic stimulation (TMS) to non-invasively and

directly impede or facilitate visualization-associated regions [254, Sec. 5] of the brain and

then analyze the effects on programmer performance. Neurostimulation via TMS induces a

current within a region of the brain itself, temporarily changing transmembrane potentials

and causing neurons to be more or less excitable (see Section 2.4.1 for a discussion on

how TMS works). Unlike neuroimaging methods, such as fMRI or fNIRS, that indicate

correlations between brain and behavior, TMS can be used to demonstrate causal brain-

behavior relations [255, Sec. 3][256, pp. 595–596]. Stimulation that interferes with task

performance indicates that the affected brain region is necessary for the task (i.e., establishes

causality).

We applied TMS to 16 participants, disrupting three regions of their brains to probe

causal relationships between programming and neural activity. The regions were stimulated

on different days via an established TMS protocol (Section 5.2.3) and state-of-the-art per-

subject brain region localization (Section 5.2.3.1). To the best of our knowledge, this is also

the first such study in computer science to feature multiple treatments and visits, more natu-

rally admitting both within-one-subject and between-multiple-subjects analyses (cf. previous
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computer science neuroimaging replications using different subjects each time [41]). After

TMS, subjects completed a randomized set of 180 tasks: code comprehension, data structure

manipulation, and mental rotation. Differences in outcomes (e.g., time) give confidence in a

causal relationship (see Figure 5.1).

Care is necessary to avoid bias as we probe causal relationships. We pre-register hy-

potheses (mitigating some threats from researcher bias), correct for multiple comparisons

(mitigating some threats of false discovery), use special active controls (mitigating some

threats of participant response bias [257]), and conduct some analyses with condition la-

bels anonymized (mitigating some threats from researcher bias). In addition, with over

1,600 minutes of neurostimulated performance, our study involves comparable observation

to correlative studies (e.g., 1,300 [43], 600 [41], etc.).

The main contributions of this chapter — separately published in the 46th ACM/IEEE

International Conference on Software Engineering [258], with an ACM Distinguished Paper

Award — are:

• A controlled human study (n = 16) investigating the first use of neurostimulation in a

computer science context.

• Experimental evidence that suggests a lack of causal relationships for multiple

previously-published correlations (e.g., for code understanding [41, Sec. 5.1], data struc-

tures [45, Sec. V.B], code complexity [249, Sec. III.B], or code writing [46, Sec. 5.2]).

• A replication of prior findings that stimulation of supplementary motor area degrades

mental rotation task completion time, giving confidence that we applied TMS correctly.

• Experimental evidence showing that TMS treatment condition contributes to time

outcome dispersion among participants. Via multi-level regression analysis, we find

that TMS accounts for 2.2% of the variance in task completion times.

• A summary of lessons learned and costs associated with a neurostimulation study of

programming, along with a publicly available de-identified dataset for future replication

and exploration.

5.2 Experimental Setup and Methods

We present our study design for investigating the causal link between neural activity and

programming via TMS. Each individual underwent a localizing (fMRI) scan and two to four

subsequent TMS sessions, each on a different day. At each TMS session, an experimental
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condition was applied: stimulation of one of two spatial reasoning-associated regions or

stimulation of an active control (leg-associated) region. After treatment, participants were

tested on a set of stimuli. This design allows for a controlled investigation of a potential

causal link between spatial reasoning and program comprehension for programmers.

5.2.1 Participant Recruitment

We recruited 16 participants via a combination of email, course forums, posters, and in-

class presentations under UM IRBMED-HUM00216195. Eligible subjects were required to

be 18 years or older, be right-handed, be native English speakers, have normal to corrected

vision, and have at least 1.5 years of programming experience. Due to TMS safety policies,

participants were also required to pass a medical screening form. Participants whose medical

history indicated any neurological risk factors, drugs active in the central nervous system

(e.g., antipsychotics, antidepressants, or recreational stimulants), or poor levels of sleep were

excluded from the study [259, 260]. We note that the risks associated with TMS are minimal,

with only one known case of a seizure [259].

Because individual humans vary slightly in brain anatomy [261], we obtained anatomical

MRI images for each individual to produce a personalized localization. We collected 23 brain

scans, of which 16 are part of our final analysis (others dropped out or failed later safety

screenings). Additionally, data from one participant was removed from the final analyses

due to inconsistencies and outlier data points (i.e., response times more than 2 standard

deviations away from the mean). Overall, our final analysis considered 16 participants: 8

male and 8 female.

Background and demographic information were collected from 14 out of 16 participants.

6 of our participants reported being undergraduate students, 4 as graduate computer science

students, 2 as industrial professionals (software engineers), 1 as a non-computing student,

and 1 as a non-computing-related professional. All subjects were also screened for basic

programming knowledge of C++. Participants who completed the study in full, which

consisted of a localizing anatomical scan and three subsequent TMS sessions, received $125.

5.2.2 Stimuli and Tasks

After each TMS treatment, participants were shown a varied set of 61 stimuli from three

tasks: Code Comprehension, Data Structure Manipulation, and Mental Rotation. We se-

lected stimuli that were short and concise to fit well within the 60-minute effect window of

the TMS treatment (see Section 5.2.3.1). Data structure and mental rotation stimuli were

acquired from previously-published studies that examined spatial visualization and program-
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(a) Data structure manipulation stimulus

(b) Mental rotation stimulus

(c) Code comprehension stimulus

Figure 5.2: An example TMS stimuli shown to participants. Data structures stimuli include
linked lists and trees, while code comprehension stimuli also cover Big-O complexity.
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ming [45, 47] and thus relate to our research questions. Code comprehension stimuli were

taken from previous quizzes and exams administered in a data structures and algorithms

course at a large public university in the US. Responses to each stimulus were given by

selecting one of two answer choices via the ‘A’ or ‘B’ keys on a standard laptop keyboard.

Stimuli were administered via the open-source PyschoPy (version 2022.2.5) package [262].

Individual tasks took 15–60s to complete, with 35 minutes to complete all 61 stimuli. We

now describe the stimuli in further detail.

5.2.2.1 Data Structure Manipulation Task

We obtained a total of 89 validated data structure task stimuli from a prior publication

reporting a neural correlation with computer science tasks [45]. Stimuli covered arrays, linked

lists, and trees. Each stimulus included a starting data structure, an operation to perform,

and two answer choices (Figure 5.2a). Answers were either numerical values to describe the

outcome of an operation or candidate data structures resulting from an operation. The tree

tasks included binary search tree (BST) rotation, insertion, and traversal operations.

5.2.2.2 Mental Rotation Task

We use both the Huang et al. [45] and the Endres et al. [47] spatial skills stimuli. These

include Mental Rotation Stimulus Library questions established by Peters and Battista [263]

with varying rotational angle difficulty as well as the Revised Purdue Spatial Visualization

Test (PSVT:R II) [264]. PSVT:R II is a standard assessment of different facets of spatial

ability. Mental rotation tasks asked participants to compare two 3D objects rotated about

an axis (Figure 5.2b). Participants selected the object that matched the starter object,

accounting for rotation. Our stimuli included 56 distinct mental rotation tasks.

5.2.2.3 Code Comprehension Task

Code comprehension tasks were acquired from exams and quizzes for a data structures and

algorithms course at the University of Michigan, a large public university. All tasks have

previously been used to assess thousands of undergraduate students on their knowledge of

data structures. For each stimulus, participants were asked to trace through snippets of

C++ code and select one of two answer choices (Figure 5.2c). Tasks included deducing the

values printed or returned by a function, and analyzing the time and memory complexity of

the code. A total of 38 distinct code comprehension stimuli were included in our study.
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Figure 5.3: Transcranial magnetic stimulation treatment setup. We use per-participant
localization (top screen) and the hand-held magnetic coil (center right) on the scalp of the
participant (seated center) to induce current in a brain region.
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5.2.3 TMS Treatment

We summarize our experimental design decisions at a high level. We claim no novelty in the

mechanics of TMS application — indeed, we intentionally use a high-quality and established

TMS protocol (see Figure 5.3) for this application in programming. In brief:

1. “How do we apply TMS at all?” We use a best-practice protocol and off-the-shelf

hardware and software (Section 5.2.3.1).

2. “How much TMS do we apply?” Following best practices, we find per-participant

stimulation thresholds (Section 5.2.3.2).

3. “Where do we apply TMS?” Following best practices, we measure each participant’s

individual brain anatomy and target brain regions implicated in previous correlative

studies (Sections 5.2.3.3 and 5.2.3.4).

4. “How do we minimize bias?” We use a best-practice active control in which an unre-

lated brain region is stimulated (in a process that still feels like other TMS treatment,

Section 5.2.3.3). We randomize treatment conditions and stimuli and blind conditions

when possible (Section 5.2.3.5).

Knowledge of TMS details (e.g., theta burst stimulation) is not necessary to understand

our results or their import. TMS can be viewed as an effective black box that temporarily

impairs brain regions (see Section 2.4); the remainder of this section provides details relevant

for replication and justification of best-practice decisions.

5.2.3.1 Stimulation Protocol

We applied a continuous theta burst stimulation (cTBS) protocol consisting of 3 pulses of

stimulation at 50 Hz, repeated every 200 ms, for a total of 600 pulses in 40 seconds. The

method is an accepted form of stimulation in various psychology and medicine research papers

studying TMS effects [113, 265]. This method is effective in providing long-lasting effects

of approximately 60 minutes [113]. This is essential for our experiment, since effects should

last long enough to complete the 35-minute task block presented after TMS treatment, but

short enough to limit effects post-study to mitigate safety concerns. The time to complete

this protocol is drastically smaller than that of other stimulation protocols (e.g., [266]),

facilitating recruitment.

We used a well-established stimulation procedure to maximize accuracy and time [113].

cTBS was delivered over the scalp through a MagPro X100 magnetic stimulator and a 90
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mm figure-8 coil (MC-B70, MagVenture Inc.). The cTBS protocol was tolerated well by all

subjects with no negative side effects reported.

5.2.3.2 Thresholding

Because each human is slightly different, we use a well-established protocol to determine an

appropriate stimulation intensity for each participant. We first find the participant’s individ-

ualized active motor threshold (AMT) for the first dorsal interosseous muscle (FDI) of the

right hand as they contract the FDI [114, 115]. This common method involves stimulating

the primary motor cortex on the left hemisphere at various levels with the aim of eliciting a

motor evoked potential (MEP) of ≥ 50 µV peak-to-peak on five out of ten trials while the

participant is subjectively contracting the FDI muscle at 20% of maximum. A stimulation

threshold that meets such requirements is known as the AMT and allows us to effectively

stimulate each participant safely [114, 115]. In most subjects, the lowest stimulation thresh-

old can be found in this manner [114]. To ensure accurate recording of MEPs and AMT, the

participant is adjusted with disposable self-adhesive electromyograph (EMG) on their right

hand. EMG activity was amplified (x1000) with a BioAmp (AD Instruments, USA) using

a Powerlab 4/35 system and digitized (10 kHz) and recorded using “Brainsight TMS” neu-

ronavigation software (Rogue Research, Montréal, Canada). Physiological responses were

visually monitored because twitches near or around the FDI of the right hand can indicate

if stimulation is occurring at the correct positioning [259]. Once AMT was determined for

the participant, cTBS stimulations were applied at 80% AMT to comply with commonly-

accepted safety standards [260, 259].

5.2.3.3 Treatment and Control Conditions

Participants were stimulated in multiple brain regions to assess the causal relationship be-

tween neural activity and programming. In particular, we stimulated the primary motor cor-

tex (M1) (reported as correlated with code understanding [41, Sec. 5.1], data structures [45,

Sec. V.B], and code complexity [249, Sec. III.B]) and the supplementary motor cortex (SMA)

(reported as correlated with code writing [46, Sec. 5.2]). The left primary motor cortex was

chosen as the motor sub-area for stimulation since all participants were required to be right-

handed.

To ensure that any changes observed in the participant are caused by the stimulation, as

opposed to some other general factor (e.g., arousal, attention, altering response to the TMS

sounds), we apply an active control condition in which the cranial vertex (a leg-associated

brain region) is stimulated. The vertex region is a commonly-used control in TMS studies
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with cTBS protocols [267, 268]. Introducing an active control is shown to provide the same

sensation of TMS stimulation without affecting the brain areas of interest [269, 270, 271, 272,

273, 274, 275]. An active control thus further mitigates participant response bias [272, 257].

In total, participants were stimulated in three different brain regions, one on each TMS

session in randomized order.

5.2.3.4 Stimulation Localization

Every brain is slightly different [261], so we collected individual 3D brain scans to accurately

target stimulation on each participant. While some studies report localizing brain anatomy

by sight or by feel, we used an fMRI to collect high-resolution imaging following best TMS

localization practices [272]. All imaging procedures were conducted on a 3T General Electric

MR750 with a 32-channel head coil at the University of Michigan Functional MRI Labora-

tory. Participants attended a single 45-minute scanning session for brain region localization.

High-resolution anatomical images were acquired with a T1-weighted spoiled gradient recall

(SPGR) sequence (TR = 2300.80 ms, TE = 24 ms, TI = 975 ms, FA = 8◦: 208 slices, 1

mm thickness). We obtained estimates of the static magnetic field using spin-echo fieldmap

sequences (TR = 7400 ms, TE = 80 ms; 2.4 mm slice thickness).

Subjects’ heads were reconstructed in 3D using the Brainsight TMS neuronavigation soft-

ware from their T1 anatomical scans and the locations of the left primary motor cortex (M1),

SMA, and cranial vertex were determined for stimulation. The M1 region was identified using

axial scans by locating the “hand knob” and hook in MRI images [260, 276, 277, 278, 279].

The SMA region was located by selecting the voxel in individual anatomical scans best cor-

responding to the Brodmann area definition for pre-SMA and SMA (Talairach coordinates

x = −28, y = 0, z = 48) [280, 281] (cf. [282]). The cranial vertex control region was located

by selecting the intersection of an abscissa between the nasion and the inion, and an abscissa

between the left and right tragus on individual structural brain scans [283, 272]. Localization

methods used were overseen by two independent TMS experts, adding confidence.

Localized regions were marked for stimulation as targets via Brainsight’s frameless stereo-

taxy system which uses an infrared camera for monitoring head locations of the participant

by tracking reflexive markers attached to the head of the participant [284, Sec. 2]. Head lo-

cations are then related to the structural MRI brain data of the participant, guiding precise

positioning of the magnetic coil.
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5.2.3.5 Minimizing Bias

In addition to our use of an active control (see Section 5.2.3.3), we took additional steps to

reduce bias. First, participants were not informed of which brain region was being stimulated

at the time of the session. Second, participants were not given information on the expected

effects [257]. This was single-blind, not double-blind, since the researcher manually targets

the TMS coil at the brain region and thus knows the treatment condition. After each TMS

stimulation was applied, participants were presented with randomized task stimuli on an

automated, online platform which required no interaction with the researchers. A final post-

test survey was administered on a printed page. We believe that these (non-)interaction

procedures help minimize threats associated with participant response bias.

5.3 Analysis Approach

We analyze our results via statistical assessments and modeling. Critically, unlike fMRI-

based computer science papers (which must use nuanced methods to account for large num-

bers of noisy voxels, etc., when analyzing brain scans, e.g., [43, Sec. IV]), our primary

analyses are of the broad form “did the participants in the treatment condition answer the

test questions better (or faster) than those in the control condition?”. While some modeling

sophistication is required (e.g., to account for heterogeneity, see Section 5.3.2), we do not

analyze brain scan data for our research questions.

However, to form robust experimental conclusions, especially involving “null” results, we

must minimize the potential for bias, including researcher bias during analysis. In addition

to approaches taken in our experimental protocol (e.g., randomization, single-blind, etc., see

Section 5.2) we also follow two practices in our analysis: pre-registering our hypotheses and

partial blind analysis.

5.3.1 Pre-Registration and Bias

Pre-registration is a scientific process in which the “research rationale, hypotheses, design and

analytic strategy” are submitted before beginning the study [285]. This helps mitigate biases

associated with researchers choosing which results to present post hoc: “pre-registration can

prevent or suppress HARKing, p-hacking, and cherry picking since hypotheses and analytical

methods have already been declared before experiments are performed” [286]. Similarly,

following a discipline of pre-registration may mean that “researchers will not be motivated

to engage in practices that increase the likelihood of making a type I error” [285]. While not

as common in computer science (but see the “Registered Reports” track of Mining Software
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Repositories [287], for example), pre-registration is increasingly adopted by journals and

researchers, especially in fields such as psychology and social science (e.g., [288]).

Our hypotheses, such as “TMS stimulation in the SMA or motor cortex will significantly

disrupt accuracy and or reaction times on both mental rotation and programming tasks com-

pared to an active control condition (TMS stimulation in the vertex)”, were pre-registered

with the Open Science Framework (https://osf.io/m4p6e) along with our data collection

strategy and statistical analysis methods. This includes our criteria for excluding data and

inferring significant correlations.

In addition, our final analysis was conducted blind: labels representing the treatments

(vertex, SMA and M1) were randomly coded as A, B, and C, before the analysis strategy was

set. This helps mitigate researcher bias in the choice of analysis tools or methods.

Finally, the Benjamini-Hochberg (BH) adjustment was used to correct for multiple com-

parisons when necessary in evaluating p-values [289]. Prior work has shown the choice of

statistical software is important [290]: our analysis primarily used the R package lme4 and

the Python package scikit-learn.

5.3.2 Multi-level Regression Analysis

Our experimental design produces item-level assessment data, where each response to a

question contributes an observation to the dataset. We broadly follow the framework of Item

Response Theory (IRT), a branch of psychometrics which is concerned with the analysis of

this type of data [291, 292]. Specifically, we employ multi-level regression models to examine

relationships between a response variable, stimulated brain region, and control variables. We

linearly model response time and self-reported perceived difficulty, and logistically model

accuracy. This is collectively referred to as multi-level regression analysis, or mixed-effects

modeling.

We claim no novelty in statistics, and focus our discussion on why this analysis appro-

priately incorporates important aspects of our data and research hypotheses. For general

information about our methods, we refer the reader to Bates et al. [293] and Faraway [294,

Ch. 8].

5.3.2.1 Suitability of Multi-level Regression

Multi-level regression analysis is well-suited to handling heterogeneity between groups of

observations, such as those that arise from repeated measures [295]. In our experiment, each

participant response (to 150–183 stimuli) is a distinct data item; these may be correlated

due to an underlying person-dependent “skill”. We also have repeated measures for each
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stimulus, as multiple participants answer every question; such observations may be correlated

due to variation in question difficulty. We can also posit heterogeneity between content

domains (e.g., code comprehension vs. data structures). Such considerations are common in

the analysis of item-level assessment data [296, 297]. Multi-level models also perform well

with unbalanced group sizes. Our experiment has modest imbalance (e.g., 843 observations

of SMA stimulation vs. 939 of M1). Moreover, not all questions have responses from all

participants (e.g., from drop-out).

Multi-level regression analysis allows us to test hypotheses about both systematic and

heterogeneous TMS effects, as discussed below.

5.3.2.2 Systematic and Heterogeneous Effects

A mixed-effects model can include independent variables whose effects are systematic (fixed

effects), heterogeneous (random effects), or both. Interactions of fixed effects further permit

modeling effects that are systematic within specific groups of observations. This is relevant

because we hypothesize a systematic TMS treatment effect within each programming task

(e.g., data structures vs. code comprehension).

Random effects can pertain to multiple levels of grouping in the data. For example, they

can model heterogeneity between people, between person-domains, or both. This is relevant

because we hypothesize a heterogeneous TMS treatment effect that varies between people, as

has been found in TMS studies of other disciplines [114, 115, 298, 299, 300, 301, 302, 303, 304].

That is, some people may improve performance under TMS while others reduce performance.

We are interested in the TMS effect distribution over the population represented by our

study subjects. This is mirrored in our experiment design, which features person-specific lo-

calization (Section 5.2.3.4) and person-specific TMS intensity thresholding (Section 5.2.3.2).

Mixed-effects models can express our hypothesized person-dependent TMS effect using a ran-

dom effect that describes interactions (combinations) of TMS conditions and participants.

5.3.2.3 Model Specification, Parameter Estimation, and Inference

The dependent variables we consider are per-question accuracy, per-question response time,

and perceived difficulty. We first consider plausible effect structures for the available inde-

pendent variables, based on existing literature and our experimental design [297]. Examples

are given in Section 5.3.2.2 (see replication package linked in Section 5.3.3 for the full list).

We apply logarithmic transformation to response times to address skew (discussed in

Sections 5.4.1 and 5.4.3). All models are fit by maximum likelihood estimation (MLE) to the

programming and mental rotation data separately. To find the best-fitting candidate model
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for each dependent variable, we optimize Akaike Information Criterion (AIC), a widely-used

model selection metric [305, 306].

We are interested in the TMS treatment condition (i.e., which brain region was stimu-

lated), which may exhibit a fixed or a random effect. If the best-fitting model has a fixed

(systematic) TMS effect, we explicitly verify statistical significance via a likelihood ratio

“omnibus” test relative to a model without the TMS effect [294, Appendix A.2]. We then

pinpoint the source using post-hoc pairwise contrasts, with Benjamini-Hochberg adjustment

for the 3 comparisons. Alternatively, if the best-fitting model has a random (heterogeneous)

TMS effect, we explicitly verify statistical significance using profile likelihood analysis [293]

and parametric bootstrap methods [307] to find the 95% confidence bounds of the statistic.

5.3.3 Replication

Our replication package (publicly available at https://github.com/hammad-a/ICSE24_

TMS) contains raw data for de-identified participants and relevant analysis information, in-

cluding scripts, data management, and statistical assumption checking.

5.4 Results

With behavioral and survey data, we ask:

RQ 5.1 Can we replicate prior findings that neurostimulation of the SMA reduces mental

rotation completion times?

RQ 5.2 Is there a direct causal relationship between activity in the SMA or M1 brain

region alone and performance?

RQ 5.3 Does neurostimulation of the SMA or M1 brain regions affect objective computing

performance outcomes?

RQ 5.4 Does neurostimulation in the SMA or M1 brain region affect self-perceived prob-

lem difficulty?

5.4.1 RQ 5.1: TMS and Mental Rotation

The supplementary motor area (SMA, Broadmann area #6) is a part of the frontal cortex

and coordinates complex and internally-guided motor actions for extremities. The primary

motor cortex (M1, Broadmann area #4) is in the anterior bank of the precentral sulcus

and is involved in the execution of voluntary, external body movements (such as contracting

skeletal muscles).
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Prior psychology studies using TMS found a causal link between the SMA and mental

rotation, but no such link for the M1 [308]. To gain confidence in the accuracy of our results

regarding the SMA, M1, and computing, we attempt to replicate this causal link between

the SMA and mental rotation.

We find that TMS stimulation of the SMA impairs response time for spatial reasoning

stimuli, compared to TMS of the vertex region (our active control condition). With p ≤ 0.02,

TMS stimulation of the SMA results in an increase of 0.143 log-seconds in expected per-

question log-transformed response time1 (a 15.3% increase in raw response time, or 1.5 s

slower on our median response time of 9.82 s) relative to stimulation of the vertex region.

We replicate a prior study showing that stimulating the SMA influences spatial reasoning

performance (p ≤ 0.02), adding confidence in our correct administration of TMS.

5.4.2 RQ 5.2: SMA, M1 and Computing

Overall, we find no evidence of a causal relationship between activity in the supplementary

motor area and computing outcomes. In particular, we find no question type for which

accuracy in the SMA treatment condition and accuracy in the control condition are statis-

tically different (p ≥ 0.81). Similarly, there is no question type for which response times

for the SMA treatment condition and time taken in the control condition are statistically

different (p ≥ 0.22). We also find no evidence of a causal relationship between activity in

the primary motor area and computing outcomes for any question type (p ≥ 0.50 for accu-

racy, p ≥ 0.73 for time taken). The mean response accuracy and response times (prior to

log-transformation) across different TMS treatments are shown in Table 5.1.

Quite surprisingly, our results do not agree with multiple previously-established correla-

tions. For instance, for the SMA region, Siegmund et al. found a correlation between brain

activity and code understanding [41, Sec. 5.1], Huang et al. found a correlation between

activity and data structure manipulation [45, Sec. V.B], and, most recently, Peitek et al.

found a correlation between neural activity and comprehension of code with higher complex-

ity metrics [249, Sec. III.B]. Likewise, for the M1 region, Krueger et al. found a correlation

between activity and code writing (as opposed to prose writing) [46, Sec. 5.2]. The lack of ev-

idence of a causal relationship between single-region brain activity and computing outcomes

calls into question the research community’s understanding of cognition for programming

tasks. Simply disrupting activity in one region does not uniformly result in lower outcomes.

Our results suggest that interpreting cognition for programming is complex: multiple brain

regions could be causally responsible for outcomes for programming tasks (cf. [309]).

1We log-transform the dependent variable to address right skew in raw response times (skewness 3.18→
0.35) and residuals of the optimal-AIC fitted model (2.93→ 0.59).
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Table 5.1: Mean response accuracy and times across TMS conditions. Response times are
given in seconds, while response accuracy is shown as a percentage.

Mean (SD)
M1 SMA Vertex

Response Time (Overall) 20.4(±17.2) 20.5(±16.2) 20.3(±18.3)
Response Accuracy (Overall) 95.1(±7.2) 94.7(±6.7) 94.4(±7.5)

Response Time (Data Structures) 22.4(±17.2) 21.8(±16.8) 21.7(±17.8)
Response Time (Mental Rotation) 14.0(±13.4) 15.5(±14.1) 14.2(±15.2)

Response Time (Code Comprehension) 25.4(±19.6) 25.1(±15.9) 26.2(±21.0)

Response Accuracy (Data Structures) 93.8(±8.9) 93.3(±9.4) 92.6(±10.7)
Response Accuracy (Mental Rotation) 95.3(±9.9) 95.2(±7.5) 95.0(±8.4)

Response Accuracy (Code Comprehension) 92.9(±14.5) 93.2(±9.9) 93.9(±7.9)

Our null results further argue for nuance in pedagogical interventions based on cognition.

Indeed, a recent investigation by Endres et al. [47] concluded that student training based on

spatial visualization produced worse results than technical reading, a result not in line with

prior correlative studies (e.g., [45]). The lack of a causal relationship between brain regions

associated with spatial reasoning and programming outcomes helps further explain these

recent results, and cautions against misdirected research and pedagogical interventions that

may otherwise be undertaken if correlation and causation are confused and not thoroughly

investigated (e.g., via a controlled study).

We fit a multi-level linear model to mental rotation responses (see Section 5.3.2). Criti-

cally, our optimal-AIC model contains the TMS condition as a fixed effect. We calculate post-

hoc pairwise contrasts between TMS conditions (with Benjamini-Hochberg adjustment), to

obtain the significance result (p ≤ 0.02). This result generalizes over both types of mental

rotation stimuli from prior work: we find no significant difference in the impact by stimulus

source (see Section 5.2.2.2).

Of note, we also find no significant difference in response times between TMS stimulation

of the M1 and control (p = 0.18). Our results thus replicate prior findings that TMS of

the SMA impacts mental rotation response times, but that TMS of the M1 does not have

a significant effect [308]. Our replication results give confidence that we have applied TMS

correctly.
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Table 5.2: TMS mixed-effects model parameter estimates predicting log-transformed re-
sponse times. The “C.I.” columns give the confidence interval for the standard deviation
estimate of the corresponding random effect. Critically, the “Participant by Brain Region”
interval (bolded) excludes 0, indicating a statistically significant person-specific effect involv-
ing TMS neurostimulation.

Std. 2.5% 97.5%
Random Effect Vari. Dev. C.I. C.I.

Stimulus .204 .452 .398 .517
Participant by Question Type .019 .137 .100 .190
Participant by Brain Region .010 .099 .066 .143
Participant .037 .193 .118 .308

Residual .175 .418 .404 .433

We find no evidence of a causal relationship between computing outcomes and activity in

SMA (p ≥ 0.22) and M1 (p ≥ 0.5). Our results do not agree with multiple previously

established correlations, warranting further exploration of the cognitive basis of program-

ming.

5.4.3 RQ 5.3: TMS and Computing Outcomes

While our analyses for RQ 5.2 find no evidence of a monotonic causal relationship (e.g.,

“stimulating the SMA alone always reduces performance on data structure questions”),

multi-level regression analysis finds that TMS stimulation does have a statistically significant

non-systematic person-dependent effect on response time. Per Section 5.3.2, we produce a

best-fit model of response times.2 Equation 5.1 outlines our best fit model (presented using

R syntax), and Table 5.2 shows point estimates and 95% confidence intervals.

log(Response Time) ∼ Question Type ∗ Session Number (5.1)

+ (1|Participant) + (1|Stimulus)

+ (1|Participant : Question Type) + (1|Participant : Brain Region)

Equation 5.1 can be interpreted as a model for log-transformed response times that con-

tains fixed (systematic) effects for question type, the session number (e.g., to model learning

effects), and interactions between the two fixed effects. The model further contains random

2As with RQ1, we log-transform to reduce right skew in raw times (skewness 2.21 → 0.17) and model
residuals (2.26→ 0.11).

86



(heterogeneous) effects for participant “ability” (e.g., some participants may have more ex-

pertise for programming than others), the stimulus presented (e.g., some questions may be

more difficult than others), an interaction between participant and question type (e.g., some

participants may be better at certain types of questions than others), and an interaction

between participant and brain region stimulated (e.g., some participants may have different

reactions to different TMS conditions than others).

The confidence interval for the standard deviation of the “Participant by Brain Region”

(denoted as (1|Participant : Brain Region) in Equation 5.1) random effect excludes zero,

indicating a significant effect. The estimated proportion of variance explained (PVE, equal

to the variance of estimate interest divided by the sum of all variances) of this effect is 2.2%.3

The 95% confidence interval for that figure is (0.7%, 4.0%), calculated using the methods in

Section 5.3.2.

This is evidence for a person-dependent TMS effect that is heterogeneous. We note that

any non-zero effect is important for a new intervention. This result is particularly exciting,

since while TMS has successfully been used to improve performance in other domains (see

Section 5.6), ours is the first study providing evidence that TMS can alter outcomes for

programming tasks. Our results argue for further exploration of using TMS (e.g., with

protocol that strictly excites brain activity) to improve computing outcomes.

We also note that there is no evidence for a systematic effect from certain TMS conditions

that improves or impairs programming ability relative to other TMS conditions. That is,

while the effects of SMA and M1 stimulation on programming question response times are

different (p = 0.028), one is not overall better or worse at improving outcomes. This is

expected from our protocol (which focused on demonstrating the possibility of any effect,

not on positive-only effects).

We can interpret our result using a “difference-in-differences” approach from generaliza-

tion theory [310]. Consider an arbitrary member of the population placed in two scenarios.

In each scenario, they are presented with the same set of questions from our stimuli. We

consider the subject’s average response time in each scenario, with the set of questions large

enough that residual variance is negligible. If the subject undergoes TMS stimulation to the

same brain region in both scenarios, then the difference in average response times is zero

(with probability 1). By contrast, if the brain regions stimulated differ, the “difference in

differences” of log-transformed response times is 0.099, equivalent to a ratio of 1.10× between

the two differences in raw response times.

3Informally, if we assign the random effect for stimulus on log-transformed response times a normalized
value of 1.0, we see that the random effect for the interaction between participant and brain region stimulated
is 0.010

0.204 × 1.0 = 0.049. In other words, the random effect for the interaction between participant and TMS
to a particular brain region is 4.9% that of question difficulty on log-transformed response times.

87



TMS has previously been shown to significantly improve or impair performance in many

other fields (see Section 5.4), and our results extend this to programming. Although the effect

size shows that the treatment condition (i.e., the region of the brain that is stimulated by

TMS) accounts for 2.2% of the variance we see in response times, this is a more substantial

report than it may first appear. Many papers on computer science interventions do not

include effect size in their results at all, or omit comparisons to a non-intervention baseline: in

a 2018 review of 129 papers on pedagogical interventions in computer science, none included

an effect size [311].

Some published results of interventions in computer science that do include such informa-

tion may report similar variance in outcomes to our results. For example, one longitudinal

study by Cooper et al. [312] considered a two-week, full-day workshop completed by high

school students, of which 7.5 hours were devoted to spatial skills for a treatment group. They

report that “the treatment group improved by an average score of 1.06 [out of 16 APCS

questions], and that this was significant at the p = 0.07 level” [312, Sec. 4.2]. Although

our approach uses a very different methodology and the results are not directly compara-

ble, we note that that initial study provided the basis for subsequent studies of hundreds of

students [50] and is associated with a 1-credit spatial skills course at a large university [49]

where it improved retention in the major and grade outcomes for other classes. A small

effect in an initial study may lead to a useful intervention later.

Additionally, since our main goal was to determine if neurostimulation could impact

computing performance, we selected a protocol that may help or hinder ability. However,

other TMS protocols exist that solely excite regions of the brain and/or otherwise observe

predominantly positive results (e.g., [300, 313, 314], see Section 5.6). As a concrete example,

an intermittent protocol (rather than the continuous protocol used for this experiment)

involving applying theta burst TMS for 2s every 10s may result in heightened neural signal

transmission [315]. Future work should investigate whether such heightened transmission

translates to improved outcomes on computing tasks.

In addition to varying the protocol, future studies would benefit from varying the target

brain area. While this paper investigated spatial skills, other studies implicate that brain

regions associated with working memory (e.g., the dorsolateral prefrontal cortex) or language

skills (e.g., Wernicke’s or Broca’s areas) may be correlated with other programming activi-

ties [105, 47]. Having demonstrated the applicability of TMS neurostimulation to computing

outcomes, we encourage investigating positive impacts on other tasks.

We find evidence that TMS stimulation accounts for a 2.2% variance in response time

(statistically significant). Ours is the first study providing evidence that TMS can alter

outcomes for programming tasks.
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5.4.4 RQ 5.4: TMS and Self Perception

Following each TMS treatment, participants reported their subjective perception of the

task difficulty, both in isolation and relative to the last session (if applicable), on a Likert

scale. Overall, we find no statistically significant evidence of differentiation in the subjective

perception of participants across all treatments and all question types (p ≥ 0.21).

While we observed no differences in participants’ subjective perception of task difficulty

following treatments, we note that participants self-reports are generally not reliable [257],

and TMS may still be influencing task difficulty without participant conscious perception.

Conversely, the lack of perceived differences may remove a potential barrier to participant re-

tention in future investigations of TMS-based treatments for programming (e.g., if TMS were

to make tasks seem more difficult or frustrating, participant drop-out might be impacted,

cf. [47, 312], etc.).

We do not find any evidence of differences in the subjective perception of task difficulty

for participants across treatments and question types.

5.5 Threats to Validity

In this section we briefly summarize internal (e.g., did we apply TMS correctly?) and

external (e.g., do our participants generalize to other populations?) threats, referencing

earlier mitigation details.

Stimulation procedures. We adopt a well-established TMS protocol, supervised and

approved by an outside TMS expert. Additionally, we use per-person treatment intensity in

line with best stimulation practices. Further, we use individual anatomical brain scans for ac-

curate brain region localization. Finally, our replication of a previously-published [308] non-

computing TMS result (the impact of SMA stimulation on mental rotation, Section 5.4.1)

gives confidence in aspects of interval validity (i.e., applying TMS correctly).

Participant bias. We use an active stimulation control session and did not convey

expected TMS effects until after a participant completed all study sessions.

Tasks. We use stimuli validated in prior work and covering multiple distinct domains.

We do acknowledge that the tasks considered may not generalize to other activities (e.g.,

pair programming), and plan such exploration for future research.

Population. Our participants (largely students) may not generalize to other populations

(e.g., professional programmers). We partially mitigate this by observing each subject longer,

strengthening within-one-subject analyses.

Training. We observe a statistically significant (p < 0.01) question type-dependent

training/learning effect, which we account for in our data analyses.
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Subject variability. We use multi-level regression analysis, a well-established method

to effectively account for between-subject heterogeneity.

Researcher bias. We pre-registered hypotheses and methodology, conducted our pre-

liminary analysis with anonymized labels, and corrected for multiple comparisons.

5.6 Related Work

In this section, we discuss other interventions impacting programming outcomes, contrasting

them with TMS.

Neurostimulation represents a different, possibly orthogonal, mechanism for improving

software developer abilities compared to standard approaches such as pedagogical structures

(e.g., transfer training, tools, gamified or flipped classrooms), environmental factors and

development methodologies at software jobs (e.g., work from home, Agile/Scrum), and the

use of substances in software workplaces (e.g., Adderall, cannabis).

5.6.1 Pedagogy

Dozens of studies have investigated the benefits of the flipped classroom model (in which

instruction/learning is completed externally and discussion is done during traditional lecture

time to enforce concepts) in computer science pedagogy [316]. Similarly, gamified learning

(in which elements of games, such as leaderboards or points, are used in class) has been

studied to see how extrinsic rewards can motivate engagement of students [317].

There has been preliminary success with pedagogical interventions involving spatial rea-

soning and STEM outcomes [318, 50, 49]. Despite positive outcomes, pure spatial reasoning

training in engineering or computer science educations has not been widely adopted. We

believe that a more rigorous understanding of why spatial reasoning cross-training improves

behavioral outcomes, and its costs and benefits, would make it easier for institutions to

adopt.

5.6.2 Work Structure

The structure of offices and work hierarchies has been an ongoing and evolving topic broadly

in the field of computer science for many decades, especially with the express goal of improv-

ing company or individual programmer productivity [319]. For example, since the COVID-19

pandemic, working from home has become more relevant, and a survey of 3,634 software de-

velopers and managers from Microsoft found that 68% perceived they were just as, or more,
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productive working from home [320]. Similarly, pair programming, a key component associ-

ated with Agile development and some pedagogical methodologies, has been linked to higher

satisfaction and learning outcomes, fewer bugs, and better communication between software

engineers [321, 322, 323].

5.6.3 Medication

Many individuals program with the aid of psychoactive substances, citing enhanced abili-

ties or the alleviation of symptoms. For example, recent surveys and interviews of 801 and

26 professional programmers (respectively) in software workplaces who use such substances

found that many who use cannabis while programming do so for enjoyment, but also to

enhance creativity or brainstorming, while many who use stimulant medications do so for

perceived enhancements for focus and specific focus-intensive software tasks such as debug-

ging [324, 325]. Although many substances may improve abilities or health, administering

them at a company level may have serious legal or health impacts (e.g., Adderall usage

among people not diagnosed with ADHD has been linked to stress or the pressure to make

tight deadlines [326]).

5.6.4 Intervention Summary

In contrast to such traditional interventions, TMS does not require the use of language, effort

on the part of either a teacher or a student, or much time to use. If TMS is found to be effec-

tive in some capacity for computer science outcomes, it could be used as a non-pedagogical

intervention in tandem with other instructional, structural, or medical interventions.

5.7 Costs and Subjective Experience

In this section, we outline the unique costs and considerations we encountered during our

TMS study, emphasizing the differences from correlative studies that solely employ other

methods (e.g., fMRI or fNIRS).

5.7.1 Participant Recruitment

Unlike fMRI or fNIRS, TMS protocols may preclude subjects with a history of seizures or

anxiety-related disorders, as well as those reporting a lack of sleep the prior night. However,

TMS does not suffer from fNIRS data quality issues from hair types (cf. [45]). TMS causal
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studies require participants to attend multiple sessions (treatment and control) on different

days. Subjectively, we found the multi-session constraint to be challenging for recruiting.

5.7.2 Time

For both TMS (applied quickly in advance, lasting up to an hour) and fMRI and fNIRS

(typically measured over an hour-long session), the effective interaction duration per session

is similar. Critically, however, TMS is not limited to 60-second stimuli (unlike fMRI or

fNIRS, which are limited by the hemodynamic response function [327]). We used short

stimuli here for comparison to previous work, but future studies could use more complex

programming tasks.

5.7.3 Costs

TMS and fNIRS offer cost advantages over fMRI in terms of both initial costs and operating

costs. An institution with an fMRI lab often charges per scan (e.g., $500 per hour [43]); a

TMS or fNIRS machine can typically be used for free if present.

Our base experiment cost was $2,200 ($125 per participant for reimbursement, $200 for

electrodes); we elected to use high-quality fMRI localization (30 scan-minutes per participant,

an additional $4,000). Future work may investigate the necessity of fMRI-quality localization

for computer science TMS treatments.

5.7.4 Researcher Training

Each research team member completed over 20 hours of training before being authorized to

operate the TMS machine.

5.7.5 IRB Process

An Institutional Review Board or Ethics Board handles human study research at our in-

stitution. Depending on the review board’s experience with neuroimaging or stimulation

techniques, getting approval for a study with fMRI or TMS can require a substantial amount

of time and effort. For reference, this TMS study involved a 24-page IRB application plus

a 14-page consent form. Using fMRI to localize brain regions required an additional 4-page

data protection and privacy plan (in the United States, brain scans are HIPAA-protected).

From our first submission to approval, the IRB process took four months.
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5.7.6 Lessons Learned

Subjectively, the most difficult aspects of the experiment were training and participant

scheduling. Conducting thresholding sessions under time constraints and manually target-

ing the hand-held TMS magnetic coil required practice. Our multi-visit protocol amplified

scheduling intersection challenges between researcher, TMS equipment and participant avail-

ability.

5.8 Chapter Summary

To the best of our knowledge, this paper is the first exploration of the causal relationship be-

tween program comprehension (i.e., programming logic) and neural activity via transcranial

magnetic stimulation, a non-invasive technique well-established in the literature. Previous

correlative findings have revealed intriguing connections between specific neural regions and

programming tasks. These findings laid the foundation for enhanced understandings of ex-

pertise, pedagogy, and retraining. However, the absence of studies confirming the causal

nature of these relationships has constrained their practical applications and interpretations

in the real world.

We address causality by applying TMS treatment to 16 participants, directly targeting

two indicative brain regions (M1 and SMA) known to exhibit correlative connections to pro-

gramming tasks. We compare stimulation effects to participant performance on computing

tasks, including data structure manipulation, mental rotation, and coding comprehension.

We followed established, state-of-the-art TMS practices that were overseen by independent

TMS experts. To mitigate bias, we used a special active control, pre-registered our hy-

pothesis, conducted aspects of the experiment and analysis blinded, and correct for multiple

comparisons.

We replicate prior psychology results that TMS impacts mental rotation (Section 5.4.1,

p ≤ 0.02) — supporting replication in science and giving confidence that we are applying

TMS correctly. We find no evidence of a simple causal relationship: disrupting activity in M1

or SMA does not uniformly reduce outcomes on computing tasks (Section 5.4.2, p ≥ 0.22) —

results that do not agree with multiple previously-established correlations [41, 45, 249, 46]

and suggest that interpreting cognition for programming is complex (cf. [309]).

Critically, we find that TMS has an effect on response time for data structure and code

comprehension tasks. TMS accounts for 2.2% of the variance in observed outcomes, a

statistically-significant effect (Section 5.4.3). This provides evidence that TMS (neurostim-

ulation) can alter outcomes for programming tasks. Neurostimulation is a distinct approach
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from traditional pedagogy (e.g., it does not require a shared language, or indeed any com-

munication at all) and has produced positive outcomes in computing-related areas (e.g.,

creativity, mathematics, etc.). Now that TMS has been demonstrated to impact program-

ming outcomes, we look forward to future work investigating, and making real, the potential

benefits of neurostimulation for programming.

With the conclusion of this chapter, we have presented all three research components

investigating cognition for computational logic associated with this thesis. The next chapter

summarizes the thesis and parts with future directions.
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CHAPTER 6

Conclusion

Maintenance activities for hardware and software can correspond to up to 90% of programmer

time, making the activities the most expensive stage of the development process. Since com-

puters fundamentally do not reason like humans do, finding and fixing bugs is a cognitively-

demanding and time-consuming task. Understanding programming behavior and cognition

behind computational logic reasoning (with a focus, in this thesis, on digital logic, math-

ematical logic, and programming logic) can illuminate ways to help programmers reason

about computational logic more effectively (e.g., through interventions in the classroom or

re-training activities).

While previous research investigating cognition for computer science activities has shown

potential to improve programming outcomes in the classroom, we show that using non-

intrusive and objective measures for cognition to establish correlations, using a non-

invasive and time-efficient medical technique in a computer science context to establish

causation, and using advanced statistical models to account for programmer background

can help us better probe how programmers understand computational logic.

Using three research components presented in this thesis, we demonstrate:

It is possible to use objective measures (ranging from functional to physiological

to medical) to obtain mathematical models describing programmer behavior and

cognition for computational logic reasoning tasks, and these models can highlight

prospective cognitive interventions for student training.

• In Chapter 3, we develop an automated program repair algorithm for hardware designs

(i.e., digital logic) and investigate its use as a debugging assistant for programmers.

Our framework, CirFix, makes use of readily-available artifacts included in the hard-

ware design process (e.g., testbenches) to diagnose and repair defects in the circuit

description. These repairs can then be shown to programmers for validation before the

synthesis phase, reducing maintenance costs. CirFix makes use of our novel approaches
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to implicate faulty lines of code and to guide the search for repairs using the existing

hardware development process.

Our evaluation of CirFix presents a new publicly available benchmark suite of 32 de-

fect scenarios spanning 11 different Verilog projects. CirFix produces plausible

repairs for 21 out of 32 (65.6%) and fully correct repairs for 16 out of 32

(50%) of the Verilog defects – with respect to the programmer-provided testbench

– within reasonable resource bounds. Further, we evaluated the utility of our novel

fault localization algorithm independent of our automated repair context via a con-

trolled human study involving 41 participants. We find a statistically significant

preference (p ≤ 0.003) for CirFix fault localization as a debugging aid in

fixing multi-line defects, primarily in student applications (p ≤ 0.02).

• In Chapter 4, we use eye-tracking to better understand how programmers read and

understand formal algorithmic claims (i.e., mathematical logic). Formal methods have

been increasingly applied to software engineering, but often require mathematical train-

ing and advanced logical reasoning abilities that software practitioners may not posses.

Further, undergraduate computer science courses covering formal reasoning often suffer

from unsatisfactory student outcomes.

In a controlled human study involving 34 participants, we find that incoming prepa-

ration (as traditionally assessed) is not an accurate indicator of task out-

comes (p = 0.96), that student experience reports and self-perceptions are

not effective at predicting task outcomes (p = 0.18), and that more-prepared

students tend to pay more visual attention to the proof text but do not

achieve higher task outcomes (p = 0.005). Teasing apart higher-performing stu-

dents from the lower-performing onces, we find that students who exhibit more

attention switching behaviors are more likely to succeed (p = 0.002), and

that differences in formalism comprehension outcomes can be attributed to

performance for proofs by induction and recursive algorithms (p ≤ 0.01).

• In Chapter 5, we probe the neural link between spatial reasoning and program compre-

hension (i.e., programming logic) using transcranial magnetic stimulation, demonstrat-

ing the first use of the medical technique in a computer science context. While previous

correlative findings have revealed intriguing connections between specific neural regions

involved with spatial reasoning and programming tasks, such a causal relationship has

not been confirmed.

In a controlled human study involving 16 participants, we investigate causality by ap-
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Table 6.1: Major peer-reviewed publications supporting this dissertation

Venue Title

ASPLOS’22 CirFix: Automatically Repairing Defects in Hardware Design
Code [130] (Chapter 3)

ICSE’23 How Do We Read Formal Claims? Eye-Tracking and the Cognition of
Proofs about Algorithms [228] (Chapter 4)

TSE (Vol. 9,
Issue 7)

CirFix: Automated Hardware Repair and its Real-World Applica-
tions [131] (Chapter 3)

ICSE’24 Causal Relationships and Programming Outcomes: A Transcranial
Magnetic Stimulation Experiment [258] (Chapter 5; ACM Distin-
guished Paper Award)

plying TMS to two brain regions known to be correlated with programming (M1 and

SMA) and associated with spatial reasoning, and one control brain region (vertex).

We replicate prior psychology results that TMS impacts mental rotation

(p ≤ 0.02) — supporting replication in science and giving confidence that we are

applying TMS correctly. We further find no evidence of a simple causal re-

lationship: disrupting activity in M1 or SMA does not uniformly reduce

outcomes on computing tasks (p ≥ 0.22) — results that do not agree with

multiple previously-established correlations. Finally, we find that TMS can effect

response time for programming tasks, accounting for 2.2% of the variance

in observed outcomes (statistically-significant). Ours is the first study providing

evidence that TMS (or neurostimulation) can alter outcomes for programming tasks,

warranting further exploration of the research area.

Table 6.1 lists major peer-reviewed publications supporting the results in this thesis.

Work in this thesis presents a systematic approach to better understanding how program-

mers reason about computational logic. Our approach:

• employs non-intrusive methodologies to investigate programmer behavior and cognition

in a more ecologically-valid setting with minimal interference to user attention;

• uses objective measures ranging from functional (e.g., responses to questions) to physi-

ological (e.g., tracking eye gaze movements) to medical (e.g., stimulating brain regions)

to understand cognition for logical reasoning;

• produces context-specific models for a variety of comprehension tasks for computational

logic;
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• accounts for the incoming preparation or expertise of programmers in interpreting

results.

Adapting results from other fields (e.g., neuroscience, psychology, hardware design engi-

neering) and advanced statistical methods (e.g., multi-level regression analyses) allows us to

better understand how programmers reason about computation logic. Results in this thesis

also shed light on pedagogical interventions worth investigating before implementing them

in the classroom to better teach students how to reason as computers do.

6.1 A Look to the Future

While the work presented in this thesis provides foundational understanding of how pro-

grammers reason about a variety of tasks involving computational logic, it also delineates

future directions to obtain a more complete picture of logical cognition. In this section, we

summarize future directions and opportunities for results presented in this thesis.

6.1.1 Understanding understanding: Digital logic

Hardware debugging remains a notoriously difficult task, with very limited tool support

available to designers for debugging tasks. This difficulty extends to the classroom, where

designers with less incoming preparation often struggle with finding and fixing hardware

bugs at the simulation level (e.g., using Verilog).

Since the publication of results in Chapter 3, several follow-on studies from indepen-

dent research teams extending CirFix or improving on our technique have been accepted

in peer-reviewed venues (e.g., [328, 329]), highlighting the research community’s interest in

automated repair of hardware designs. Further, our work has garnered interest from in-

dustrial settings to be deployed locally. We believe that novel hardware APR approaches

and industrial interest signal a start to the use of automated repair of hardware designs to

reduce the maintenance costs and manual effort associated with the hardware process (cf.

Getafix [330] and SapFix [331] at Facebook for software bugs).

Our results from Chapter 3 also suggest that fault localization approaches from tech-

niques like CirFix can be helpful in a classroom setting for designers with varying levels of

experience. Given the emergence of several automated repair techniques following CirFix,

we encourage researchers to investigate the use of a debugging assistant with a plug-and-play

fault localization module (i.e., different ways to implicate faulty lines of code) in a classroom

setting. We firmly believe that such work, while outside the immediate scope of this thesis,
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has the potential to reduce the cognitive load associated with learning and debugging Ver-

ilog designs, particularly for programmers with less incoming preparation. Should results

from such investigations appear promising, we hope see debugging assistants for hardware

incorporated into the professional hardware designer workflow.

6.1.2 Understanding understanding: Mathematical logic

Formal (or mathematical reasoning) about hardware and software is becoming increasingly

important as the complexity of safety-critical IT infrastructure around us increases. At the

same time, such formal reasoning remains a very difficult task. Our results in Chapter 4

open up several research opportunities, both inside and outside the classroom.

Given that we find no evidence that traditional incoming preparation (e.g., taking more

theory courses) yields better formalism comprehension outcomes, we see this as an oppor-

tunity for educators to re-evaluate course design with material retention and the cognitive

load theory as a focal point. Indeed, similar efforts are already underway at the Univer-

sity of Michigan for an introductory computer science theory course. Further, our results

indicating that inductive and recursive reasoning remain difficult for students may serve as

an opportunity for educators to evaluate student outcomes for the traditionally challenging

topics and re-allocate learning resources as necessary.

Even for more experienced programmers, mathematical reasoning about machine-

checkable proofs of correctness in hardware and software is such a cognitively-demanding

task that team managers often find it not a good use of programmer time. We believe

that investigating cognition for such formal reasoning (e.g., a programmer trying to find

an inductive invariant for a safety property) through objective, non-intrusive measures can

be instrumental in finding ways to support such reasoning activities. Answering research

questions like “what parts of a machine-checkable proof are most difficult for a programmer

to read and understand” or “what built-in libraries make a proof easier to write” can help

reduce costs associated with, and make more practical, formal reasoning of correctness in an

industrial setting.

6.1.3 Understanding understanding: Programming logic

Cognition for programming is complex and nuanced. While our work in Chapter 5 provides

the first instance of neurostimulation within a programming context, it opens many doors

for further exploration. We find no evidence that traditionally believed correlations by the

research community extend to a causal relationship, and see this result as an opportunity:

if brain regions associated with spatial reasoning are not indeed causally associated with
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programming, then what contributes to programming success? Are other brain regions men-

tioned in software engineering literature (e.g., Broca’s region) causally involved? Is it a

variety of brain regions working together to help a human think like a programmer? Just

as spatial training has been investigated as an intervention to help students in introductory

computer science courses, answers to these questions can help pave way for cognitive inter-

ventions helping new programmers succeed in computer science (e.g., if brain regions causally

linked with working memory are also responsible for programming outcomes, educators can

investigate the effects of working memory training on programming abilities).

Additionally, measures like eye-tracking have been increasingly used in programming con-

texts to obtain a better understanding of user behavior while programming. We see the op-

portunity for more exploration here: it is possible to use eye-tracking to non-intrusively in-

vestigate programmer cognition for software engineering preparation and training tasks. For

instance, Leetcode is an increasingly relevant resource to help future practitioners prepare for

technical interviews, yet we lack a foundational understanding of what makes programmers

succeed at Leetcode. Similarly, junior practitioners often undergo several weeks of training

(and hence, expensive programmer time) before being able to meaningfully contribute to

their development teams, yet we lack an understanding of the parts of training that are most

difficult and could benefit from additional cognitive interventions. We believe that such

investigations could elucidate ways to support new programmers entering the workforce.

6.1.4 Final Remarks

Given that research into cognition for computer science is relatively new, we firmly believe

in the importance of open and reproducible science. We make publicly available any (de-

identified) datasets, experimental protocols, and analysis scripts for work in this thesis:

• Chapter 3 replication package: https://github.com/hammad-a/verilog repair

• Chapter 4 replication package: https://doi.org/10.5281/zenodo.7626901

• Chapter 5 replication package: https://github.com/hammad-a/ICSE24 TMS

We further provide discussions on costs and difficulties associated with adopting novel

approaches from other fields to computer science research.

As a closing remark, we believe that there remain many exciting research problems in

this field of work, and hope that work in this thesis paves the way for better understanding

how programmers reason about computational logic.
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