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ABSTRACT
During the initialization step, a genetic programming (GP) system
traditionally creates a population of completely random programs
to populate the initial population. These programs almost always
perform poorly in terms of their total error—some might not even
output the correct data type. In this paper, we present new meth-
ods for initialization that attempt to generate programs that are
somewhat relevant to the problem being solved and/or increase
the initial diversity (both error and behavioral diversity) of the
population prior to the GP run. By seeding the population—and
thereby eliminating worthless programs and increasing the initial
diversity of the population—we hope to improve the performance
of the GP system. Here, we present two novel techniques for initial-
ization (Lexicase Seeding and Pareto Seeding) and compare them to
a previous method (Enforced Diverse Populations) and traditional,
non-seeded initialization. Surprisingly, we found that none of the
initialization methods result in significant differences in problem-
solving performance or population diversity across five program
synthesis benchmark problems. We attribute this lack of difference
to our use of lexicase selection, which seems to rapidly converge
on similar populations regardless of initialization method.
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1 INTRODUCTION
Many initialization methods in genetic programming (GP) concen-
trate on issues specifically related to tree generation. For example,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208218

ramped half-and-half and Sean Luke’s initialization methods at-
tempt to design a diverse range of trees [9, 10]. These methods
are not applicable to GP that is not based on trees, such as the
stack-based GP we use in this work.

On the other hand, semantic-based methods of initialization
only take into account a program’s behavior, not its structure when
determining whether to allow it in the initial population. We define
the behavior of a program to be the vector of its outputs produced
when the program is run on each of the inputs. Then, the behavioral
diversity of a population is the percent of distinct behaviors of
individuals in the population. Similarly, an individual’s error vector
is computed by applying the error function to its behavior vector; a
population’s error diversity is the percent of distinct error vectors in
the population. We hope that increasing initial population diversity
will contribute to increases in problem solving.

In one example of semantic-based initialization, Jackson de-
scribes a method of iteratively creating new individuals until one
is found with different behavior from those already produced, up
to some set number of trials [8]. This approach, which tries to sig-
nificantly increase behavioral diversity in the initial population,
showed significant improvements in performance over a range
of simple problems compared to ramped half-and-half. We use a
variant of this method, Enforced Diverse Populations, in this work.

Here we present two novel population initialization methods and
compare them to Enforced Diverse Populations and to traditional
random initialization. Both of our new methods attempt to seed
the population with individuals that are diverse but also perform
relatively well.

In the following section, we describe each of the seeding meth-
ods we use in our experiments, followed by a description of the
experiments. In Section 4, we give our results, which show that
none of our seeding methods have much impact on problem solv-
ing performance. To explain this finding, we look at the average
population diversity across our sets of runs, and find that while
the methods start with wildly different populations, they quickly
converge on similar levels of diversity within a few generations. We
attribute this convergence to our use of lexicase parent selection,
which has previously been shown to collapse populations following
hyperselection events, where a single individual receives many of
the selections in a generation [4]. We hypothesize that hyperselec-
tion events are causing populations to quickly converge in early
generations, regardless of initialization method.

2 POPULATION SEEDING METHODS
We test three different methods of population seeding, each unique
in the way it initializes the population for the GP runs. All methods
attempt to filter out individuals with large errors and increase the
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error diversity of the initial population. The methods are described
in further detail in the sub-sections below.

Each of these methods requires extra computation to evaluate
individuals to decide which to include in the initial population.
To be fair and comparable to regular non-seeded populations, we
account for the extra evaluations made during the seeding process
by decreasing the maximum number of generations allowed for
the GP run. For example, with a population of 1000 individuals,
we decrease the generations by one for every 1000 individuals we
evaluate during initialization.

2.1 Lexicase Seeding
Our first method of population seeding is based on lexicase parent
selection (see Section 3.3). The way this algorithm works is as
follows. A random pool of 100 individuals is generated. A single
individual is selected from this pool using lexicase selection and
added to a "return list." This individual is removed from the pool (to
prevent the same individual being selected multiple times) and the
process is repeated until 10 different individuals have been selected.
These individuals are chosen to be part of the initial population.
The entire process is repeated 0.1 × population-size times, and an
initial population is returned. This initial population is then used
as a starting point for the genetic programming run.

2.2 Enforced Diverse Populations
EnforcedDiverse Populations creates an initial population thatmust
have an error diversity of 1.0 (i.e., all individuals in this population
have a unique error vector). A variant of this approach was first
described by Jackson [8]. To accomplish this, we iteratively generate
new individuals, and only add them to the pool if they do not
have the same error vector as some individual already in the pool.
The process is repeated until there is a complete population (with
a 100 percent error diversity), which is then used for the initial
population.

Note that this method will evaluate some number of individuals
that cannot be predetermined; thus each run using it will have a
dynamically calculated maximum number of generations. While
this process could theoretically require an extremely high number
of evaluations to find the initial population, in practice we found
that it used at most around 5 to 10 generations worth of evaluations.

2.3 Pareto Seeding
Finally, we implement Pareto Seeding, which selects individuals
using Pareto tournaments to seed the initial population. Given a
set of fitness cases, an individual Pareto dominates another if the
former does not perform worse than the latter in all fitness cases,
and the former performs better in at least one fitness case [11]. In
Pareto tournament selection, individuals on the Pareto front (i.e.,
individuals not dominated by others) are all selected as parents
[12]. We adapt this idea to create a pool of random individuals, and
use the Pareto dominance test to look for individuals that are not
dominated in the pool. From each pool of 100 individuals, all of the
non-dominated individuals are selected to be in the initial popu-
lation. This process is repeated with a different pool of a random
individuals, until a population is initialized. With this algorithm,

each individual in the population is a non-dominated individual in
the sub-population from which it was obtained.

3 EXPERIMENTAL METHODS
This section describes our experimental methods.

3.1 Push and PushGP
In our experiments, we use the stack-based language Push as our
representation for the evolving programs. Push was designed specif-
ically for use in genetic programming systems [13, 14]. Push uses
one stack per data type, and takes arguments from stacks and
returns results to stacks. Additionally, a Push program can manipu-
late its own code as it executes, which allows for various control
structures including conditionals, loops, and recursion among more
exotic possibilities.

While we use PushGP in our study, none of our experiments are
predicated on the use of a particular representation. We believe
the results are relevant to tree-based GP and any other GP repre-
sentation. We chose to use PushGP because its multiple data types
and control flow structures make it a good choice for the program
synthesis problems we use as benchmarks.

3.2 Benchmark Problems
To determine the effects of our initialization methods, we conduct
GP runs on five program synthesis benchmark problems taken
from a recent benchmark suite [5]. This set of benchmark prob-
lems is designed to contain problems with a range of difficulties
and requirements. Every problem is taken from an introductory
computer science textbook, and thus requires GP to do the type
of programming we expect of humans. From this suite we choose
five representative problems: Count Odds, Double Letters, Replace
Space with Newline, String Lengths Backwards, and Syllables.

3.3 Other parameters
Lexicase selection is a recent semantic-based parent selectionmethod
that is based on individual test cases and sequences of test cases,
rather than an aggregate fitness as in most other parent selection
methods [6]. During each lexicase selection event, the test cases
are shuffled randomly. Then, they are considered one at a time. For
each test case, we remove any individuals that do not have the best
error value of any remaining individuals. This process is repeated
until only a single individual remains, which is selected. Lexicase
selection has led to improvements in problem-solving performance
in a variety of systems and on a variety of problems [1, 5, 6]. One
factor that likely contributes to lexicase selection’s success is its
ability to increase and maintain population diversity better than
methods such as tournament selection [2, 3, 6].

Besides parent selection, we use fairly typical GP parameters,
such as a population size of 1000 and a maximum generations
of 300. Keep in mind that the population seeding techniques use
evaluations, which we subtract from the 300 available generations
to make comparisons equitable. We use PushGP’s crossover and
mutation operators, known as alternation and uniform mutation
operators [7]. Here, we use 20% alternation, 20% uniform muta-
tion, 10% uniform close mutation, and 50% alternation followed by
uniform mutation.
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Table 1: Success rates across problems. For problems, RSWN
is Replace Space With Newline and SLB is String Lengths
Backwards. For methods, None indicates no seeding (i.e. en-
tirely random individuals), Enforce is Enforced Diverse Pop-
ulations, and Pareto is Pareto Seeding.

Problem None Lexicase Enforce Pareto

Count Odds 8 6 10 4
Double Letters 6 3 5 4
RSWN 51 53 54 51
SLB 66 68 62 61
Syllables 18 20 19 18

4 RESULTS
The number of successful programs out of 100 is given in Table 1.
A pairwise χ2 test indicates that none of the differences in these
success rates are significant at the 0.05 level, which is not surprising
since they are all so close. Thus none of our initialization methods
had any significant effect on the performance of the system.

In Figures 1 through 4, we plot error diversities of the GP runs
with the problems (we left Count Odds, which looked largely similar
to the others, off for space reasons). It appears that the diversity
for the GP runs drops significantly during the first generations.
We believe that due to hyperselection caused by lexicase selection,
a small subset of the programs ends up dominating the whole
population during the first generation, which causes a steep drop in
diversity [4]. This is most evident in Enforced Diverse Population
runs, which all start with a diversity of 1.0, yet drop to the same
levels as the other methods in the first generation. Although the
diversities eventually recover as the GP runs proceed, the initial
drops tend to render the differences in initialization futile.

We also see that the diversity graphs for all methods run virtu-
ally parallel, with insignificant fluctuations between generations.
This is reflected in the very similar success rates for the GP runs
using different initialization methods shown in Table 1, all of which
are comparable to the success rates for non-seeded populations.
These signs point toward the differences between initializations
being nullified after the first generation because of hyperselection.
Figure 5 zooms in to show the drop in diversity for Double Letters
and the gradual recovery from the drop as the GP run proceeds.

Our hypothesis is that the similarity in diversities can be largely
attributed to the fact that lexicase tends to discard the semantic-
based initialization in the first generation through the process of
hyperselection. We believe that the initialization methods result
in populations in which a small group of programs dominates the
entire population. Since lexicase selection tends to select individuals
that are very good on a subset of the fitness cases, even if they
perform poorly on other fitness cases, such initialized populations
consist of individuals that are heavily favored by lexicase [6]. The
enormous drops in error diversity graphs for the GP runs are in
line with our conjecture.

We interpret these results to mean that although behavioral and
error diversity should, in theory, contribute to increases in problem
solving in Genetic Programming, such diversity induced through
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Figure 1: Error Diversity of RSWN
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Figure 2: Error Diversity of String Lengths Backwards
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Figure 3: Error Diversity of Count Odds

semantic-based initialization methods is not of much use when
lexicase is the parent selection method.

5 DISCUSSION AND CONCLUSIONS
Contrary to what we had hoped initially, the number of solutions
found (with zero error on test set) is not significantly different from
the original non-seeded populations. Any differences appear to
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Figure 4: Error Diversity of Double Letters
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Figure 5: Diversity Drop shown in the first generation of
Double Letters. This gives the first 10 generations of the
same data as Figure 4.

be solely due to the random nature of the GP runs. As is clearly
evident in the graphs, the error diversity for the GP runs is not
significantly affected by any form of seeding. It appears as though
lexicase “discards” any form of initial diversity after the population
is initialized, and works for the first 10-20 generations on its own
to build diversity that it finds useful. The results also show that
lexicase results in hyperselection for the first few generations [4].
In other words, a small group of individuals completely dominate
the population due to their low error values. This causes a steep
drop in the error diversity. After this, certain genetic operators
work together with lexicase to steer the population towards good
diversity, completely discarding the initial seeding in the process.

There seems to be ample evidence that lexicase selection does
not need population seeding to perform any better. We have seen
two populations, one starting with an initial diversity of 100 per-
cent and the other starting with an initial diversity of 7 percent,
performing almost identically. Therefore, our theory of seeding
the population to eliminate the worthless programs and increase
the initial diversity, and thereby increase the number of solutions
found, seems to not hold. Since all diversity graph lines flatten out
at similar diversities, it appears that to lexicase, the initial error

diversity does not matter. These results are a testament to lexicase
selection’s ability to increase and maintain population diversity.

However, we should not take these results to indicate futility
in improving initialization if one uses a different parent selection
technique. To this end, we think future work comparing these ini-
tialization methods on different problems with a different parent
selection technique (such as tournament selection) could shed more
light on the importance of initialization in different settings.
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